会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Spacecraft three-axis attitude acquisition from sun direction measurement
    • 航天器三轴姿态采集从太阳方向测量
    • US20070228218A1
    • 2007-10-04
    • US11709614
    • 2007-02-22
    • Bruce BrumfieldXenophon PriceGeorge WhitePhilip HirschbergKam Chan
    • Bruce BrumfieldXenophon PriceGeorge WhitePhilip HirschbergKam Chan
    • B64G1/36
    • B64G1/363B64G2001/245G05D1/0883
    • Methods and apparatus for a spacecraft (1) orbiting about a celestial body such as the Earth to reacquire operational three-axis orientation with respect to that body. A method embodiment of the invention comprises determining (201) a set of actual conditions of the spacecraft, comprising a position of the spacecraft (1) in inertial space as a function of time and a set of angular rotation rates of the spacecraft (1) with respect to a coordinate frame of the spacecraft (1), determining (202) an actual instantaneous direction of the sun with respect to the coordinate frame, and propagating (240) an estimated actual sun direction with respect to the coordinate frame as a function of time; determining (260) a desired sun direction with respect to the coordinate frame as a function of time; rotating (270) the spacecraft (1) and adjusting angular rotation rates of the spacecraft (1) so that an actual angle between the spacecraft (1) coordinate frame and the sun as a function of time substantially coincides with the desired sun direction with respect to the coordinate frame as a function of time; and, rotating (280) the spacecraft (1) around an axis defined by a line between the sun and the spacecraft until (1) the celestial body is observed by a celestial body sensor of the spacecraft.
    • 航天器的方法和装置(1)围绕诸如地球之类的天体绕行,以重新获得相对于该身体的操作三轴取向。 本发明的方法实施例包括确定(201)航天器的一组实际状况,包括作为时间的函数的惯性空间中的航天器(1)的位置和航天器(1)的一组角度旋转速率, 相对于航天器(1)的坐标系,确定(202)相对于坐标系的太阳的实际瞬时方向,并且相对于坐标系将估计的实际太阳方向作为函数传播(240) 的时间 确定(260)相对于所述坐标系的期望的太阳方向作为时间的函数; 旋转(270)航天器(1)并调整航天器(1)的角度旋转速率,使得作为时间的函数的航天器(1)坐标系和太阳之间的实际角度基本上与期望的太阳方向重合, 作为时间的函数的坐标框; 并且围绕由太阳和航天器之间的线限定的轴旋转(280)航天器(1),直到(1)天体由天文体的天体传感器观察到。
    • 3. 发明授权
    • Method for using satellite state vector prediction to provide satellite sensor automatic scan inhibit and/or sensor switching
    • 使用卫星状态向量预测的方法来提供卫星传感器自动扫描禁止和/或传感器切换
    • US06317660B1
    • 2001-11-13
    • US09578992
    • 2000-05-25
    • Lee A. BarkerXenophon Price
    • Lee A. BarkerXenophon Price
    • G05D100
    • B64G1/365B64G1/24B64G1/288B64G1/36B64G1/363G01C21/025G05D1/0883
    • A method for use on a satellite that automatically inhibits scanning of an Earth sensor to handle sensor intrusions by the sun, moon, or other celestial bodies. In implementing the method, a predicted state vector for the satellite, derived from an orbit propagator, is generated. An attitude profile for the satellite is generated. Then, the satellite state (predicted state vector) and attitude profile are processed to determine Earth, sun, and moon vectors in a satellite body frame of reference at any instant. The Earth, sun, and moon vectors are compared to the Earth sensor field of view and sensor field of view limit boxes to determine if scan inhibiting or Earth sensor switching should occur. The affected Earth sensor is inhibited or switched if an intrusion of the sun and/or moon into the field of view of the Earth sensor is predicted.
    • 一种在卫星上使用的方法,可自动禁止地球传感器的扫描,以处理太阳,月球或其他天体的传感器入侵。 在实现该方法时,产生从轨道传播器导出的用于卫星的预测状态向量。 生成卫星的姿态分布。 然后,处理卫星状态(预测状态向量)和姿态分布,以在任何时刻确定卫星体参考系中的地球,太阳和月球矢量。 将地球,太阳和月球矢量与地球传感器视场和传感器视场限制框进行比较,以确定是否应发生扫描禁止或地球传感器切换。 如果预测太阳和/或月亮进入地球传感器的视野,受影响的地球传感器被禁止或切换。
    • 6. 发明授权
    • Single-receiver multiple-antenna RF autotrack control
    • 单接收机多天线RF自动跟踪控制
    • US06570535B1
    • 2003-05-27
    • US10097678
    • 2002-03-13
    • Homer D. StevensKeith ReckdahlXenophon Price
    • Homer D. StevensKeith ReckdahlXenophon Price
    • H01Q300
    • H01Q3/2605H01Q3/267
    • A system and method for RF autotracking multiple antennas (preferably located on a spacecraft) to compensate for disturbances experienced by the antennas. The system and method estimate high frequency errors associated with all of the antennas. The high frequency errors may be estimated using a currently selected antenna and a high-pass filter. The high frequency errors may be estimated using a sensor mounted on the spacecraft, such as a gyro or star tracker, or may be estimated using information, such as planned thruster firings, for example, from a spacecraft attitude control system. Alternatively, the high frequency information may be estimated using any combination of data from these sources. Low frequency errors are estimated using measurements from each selected antenna. The algorithm implemented in the present invention explicitly accounts for the frequency content of each disturbance source. The present invention only requires sampling from one antenna at any one time, reducing the necessary hardware to only one RF receiver.
    • 用于RF自动跟踪多个天线(优选地位于航天器上)以补偿天线所经历的干扰的系统和方法。 该系统和方法估计与所有天线相关联的高频误差。 可以使用当前选择的天线和高通滤波器来估计高频误差。 可以使用安装在航天器上的传感器(例如陀螺仪或星形追踪器)来估计高频误差,或者可以使用例如来自航天器姿态控制系统的计划的推进器发射等信息来估计高频误差。 或者,可以使用来自这些源的数据的任何组合来估计高频信息。 使用来自每个选定天线的测量来估计低频误差。 在本发明中实现的算法明确地说明每个干扰源的频率内容。 本发明仅需要在任何一个时间从一个天线进行采样,将必要的硬件减少到仅一个RF接收机。