会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods and structure for dynamic data density in a dynamically mapped mass storage device
    • 动态映射海量存储设备中动态数据密度的方法和结构
    • US07620772B1
    • 2009-11-17
    • US11583331
    • 2006-10-19
    • Bruce A. LiikanenMike L. MallaryJohn MeadEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • Bruce A. LiikanenMike L. MallaryJohn MeadEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • G06F12/00
    • G11B27/3027G06F2211/1004G11B27/322G11B2220/20
    • Methods and structures for dynamic density control to improve reliability of a dynamically mapped storage device. In a dynamically mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof provide for dynamically altering the recording density of user data stored on the storage device. So long as the physical capacity utilization of the storage device permits, new data stored on the device may be stored at lower density to improve reliability in reading back the recorded data. Further features and aspects hereof may reduce the recording density only for data deemed to be critical. Radial (track) density, longitudinal (bit) density, or both may be dynamically controlled to reduce recording density. As physical capacity utilization increases, data previously recorded at lower density may be migrated (re-recorded) at normal higher density.
    • 动态密度控制的方法和结构,以提高动态映射存储设备的可靠性。 在其中所有用户提供的逻辑块由存储设备控制器动态映射到物理磁盘块的动态映射存储设备中,其特征和方面提供动态地改变存储在存储设备上的用户数据的记录密度。 只要存储设备的物理容量利用率允许,存储在设备上的新数据可以以较低密度存储,以提高读回记录数据的可靠性。 本文的其它特征和方面可以仅对于被认为是关键的数据来降低记录密度。 可以动态地控制径向(轨道)密度,纵向(位)密度或两者)以降低记录密度。 随着物理容量利用的增加,以较低密度记录的数据可能以正常较高的密度迁移(重新记录)。
    • 2. 发明授权
    • Methods and structure for dynamic appended metadata in a dynamically mapped mass storage device
    • 在动态映射的大容量存储设备中动态附加元数据的方法和结构
    • US07685360B1
    • 2010-03-23
    • US11583341
    • 2006-10-19
    • Don BrunnettBruce A. LiikanenJohn MeadEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • Don BrunnettBruce A. LiikanenJohn MeadEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • G06F12/00
    • G06F3/064G06F3/0608G06F3/0676G06F12/0866
    • Methods and structures for appending metadata with recorded data in a dynamic mapped storage device. In a dynamically mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof allow presently unused physical space to be used for storing additional metadata associated with recorded data. As the current capacity ratio of the storage device increases, appending of metadata may cease and previously recorded data including metadata may be re-recorded (migrated) to eliminate the appended metadata. The appended metadata may be used for enhanced diagnosis and analysis of characteristics of the operating storage device and may be used to restore the content of the storage device to an earlier state. The metadata may include, for example, track following position of the read/write head, temperature, head flying height, and time of day.
    • 在动态映射存储设备中添加带有记录数据的元数据的方法和结构。 在其中所有用户提供的逻辑块由存储设备控制器动态映射到物理磁盘块的动态映射存储设备中,其特征和方面允许当前未使用的物理空间用于存储与记录数据相关联的附加元数据。 随着存储设备的当前容量比增加,元数据的附加可能停止,并且可以重新记录(迁移)包括元数据的先前记录的数据以消除附加的元数据。 附加的元数据可以用于增强对操作存储设备的特性的诊断和分析,并且可以用于将存储设备的内容恢复到更早的状态。 元数据可以包括例如读/写头的跟踪位置,温度,头部飞行高度和一天中的时间。
    • 3. 发明授权
    • Methods and structure for field flawscan in a dynamically mapped mass storage device
    • 动态映射大容量存储设备中现场瑕疵的方法和结构
    • US07653847B1
    • 2010-01-26
    • US11583767
    • 2006-10-19
    • Bruce A. LiikanenEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • Bruce A. LiikanenEric D. MudamaJohn W. VanLaanenAndrew W. Vogan
    • G11C29/00
    • G01R33/1207
    • Methods and structures for performing field flawscan to reduce manufacturing costs of a dynamic mapped storage device. In a dynamic mapped storage device in which all user supplied logical blocks are dynamically mapped by the storage device controller to physical disk blocks, features and aspects hereof permit flawscan testing of a storage device to be completed substantially concurrently with processing write requests for its intended application. A fraction of the storage device may be certified by an initial flawscan performed during manufacturing testing. Statistical sampling sufficient to assure a high probability of achieving specified capacity may be performed to reduce manufacturing time and costs in testing. Final flawscan of the remainder of the storage locations may be performed substantially concurrently with processing of write requests after the device is installed for its intended application. Mapping features and aspects hereof allow the storage device controller to perform flawscan and write operations concurrently.
    • 用于执行现场扫描以降低动态映射存储设备的制造成本的方法和结构。 在其中所有用户提供的逻辑块由存储设备控制器动态地映射到物理磁盘块的动态映射存储设备中,其特征和方面允许对处理对其预期应用的写入请求的存储设备进行大量同时完成的扫描测试 。 存储设备的一小部分可以通过在制造测试期间执行的初始扫描进行认证。 可以执行足以确保实现特定容量的高概率的统计学抽样,以减少制造时间和测试成本。 存储位置的剩余部分的最终的扫描可以在装置针对其预期应用安装之后基本上同时执行写入请求的处理。 映射其特征和方面允许存储设备控制器同时执行扫描和写入操作。
    • 5. 发明授权
    • o,k,m,/m recording code
    • o,k,m / m记录码
    • US06587977B1
    • 2003-07-01
    • US09455624
    • 1999-12-06
    • C. M. (Mike) RiggleJohn W. VanLaanen
    • C. M. (Mike) RiggleJohn W. VanLaanen
    • G06F1100
    • H03M5/145G11B20/1426
    • A method for encoding data to meet a maximum run length limitation is disclosed. In one embodiment, the method comprises the steps of: (1) providing user data that includes a plurality of bits, wherein said bits have a value of 1 or 0; (2) performing an ECC computation on said plurality of user data bits to add ECC symbols in the form of a plurality of ECC bits; (3) randomizing the plurality of user data bits and said plurality of ECC bits; (4) analyzing said randomized user data bits and ECC bits to determine whether a number of consecutive bits have a common value; and, (5) inverting the value of a bit, when the number of consecutive bits having a common value exceeds the maximum run length limitation. Subsequently, representations of each of the randomized user bits and ECC bits, including any inverted bits, are stored onto a disk surface as magnetic-polarity transitions. Later, the stored magnetic-polarity transitions are read from the disk surface and the randomized user bits and ECC bits, including any inverted bits, are recovered. The randomized user bits and ECC bits are derandomized, and the value of the inverted bit is inverted to its original value using the ECC computations. Accordingly, the original user data is recovered.
    • 公开了一种用于编码数据以满足最大游程长度限制的方法。 在一个实施例中,该方法包括以下步骤:(1)提供包括多个比特的用户数据,其中所述比特的值为1或0; (2)对所述多个用户数据比特执行ECC计算,以便以多个ECC比特的形式添加ECC符号; (3)使所述多个用户数据位和所述多个ECC位随机化; (4)分析所述随机用户数据比特和ECC比特以确定连续比特数是否具有公共值; 并且,当具有公共值的连续比特数超过最大游程长度限制时,(5)反转比特的值。 随后,随机化用户比特和ECC比特(包括任何反相)的表示在磁极转换时被存储在磁盘表面上。 之后,从磁盘表面读取所存储的磁极性转变,并恢复包括任何反转位的随机用户比特和ECC比特。 随机用户比特和ECC比特被去并发,并且使用ECC计算将反相比特的值反转到其原始值。 因此,恢复原始用户数据。