会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Artificial intelligence systems for identifying objects
    • 用于识别物体的人工智能系统
    • US07711157B2
    • 2010-05-04
    • US11498531
    • 2006-08-01
    • Tuan A. DuongVu A. DuongAllen R. Stubberud
    • Tuan A. DuongVu A. DuongAllen R. Stubberud
    • G06K9/00G06K9/46
    • G06K9/6247G06K9/32
    • A process for object identification comprising extracting object shape features and object color features from digital images of an initial object and storing the extracted object shape features and object color features in a database where said extracted object shape features and object color features are associated with a unique identifier associated with said object and repeating the first step for a plurality of different objects. Then extracting object shape features and object color features from a digital image of an object whose identity is being sought and correlating the extracted object shape features and object color features of the object whose identity is being sought with the extracted object shape features and object color features previously stored in the database. If a first correlation of the extracted object shape features is better than a first threshold value for a given object associated with an identifier in the database and if a second correlation of the extracted object color features is better than a second threshold value for the given object, then making a determination that the object whose identity is being sought is said given object.
    • 一种用于对象识别的过程,包括从初始对象的数字图像中提取对象形状特征和对象颜色特征,并将提取的对象形状特征和对象颜色特征存储在数据库中,其中所提取的对象形状特征和对象颜色特征与唯一 标识符,并且针对多个不同的对象重复第一步骤。 然后从正在寻找其身份的对象的数字图像中提取对象形状特征和对象颜色特征,并将所提取的对象形状特征和正在寻找其身份的对象的对象颜色特征与提取的对象形状特征和对象颜色特征相关联 以前存储在数据库中。 如果提取的对象形状特征的第一相关性优于与数据库中的标识符相关联的给定对象的第一阈值,并且如果提取的对象颜色特征的第二相关性优于给定对象的第二阈值 ,然后确定正在寻找其身份的对象是所述给定对象。
    • 6. 发明授权
    • Input circuit for an image processor
    • 图像处理器的输入电路
    • US06307587B1
    • 2001-10-23
    • US08954600
    • 1997-10-20
    • Tuan A. Duong
    • Tuan A. Duong
    • H04N5225
    • H04N5/335G06T1/0007
    • A circuit is used with an imager that is capable of capturing an image. The circuit includes a memory that is configured to during a first time interval, store a first representation of a first subimage of the image from the imager and during a second time interval, receive an update from the imager and use the update and the first representation to store a second representation of a second subimage of the image. The first subimage partially overlaps the second subimage, and the update represents a portion of the second subimage that is not present in the first subimage. The circuit also has an output circuit that is configured to during the first time interval, use the first representation to generate output signals representative of the first subimage and during the second time interval, use the second representation to generate output signals representative of the second subimage.
    • 电路与能够捕获图像的成像器一起使用。 电路包括被配置为在第一时间间隔期间存储来自成像器的图像的第一子图像的第一表示,并且在第二时间间隔期间,从成像器接收更新并使用更新和第一表示 以存储图像的第二子图像的第二表示。 第一子图像部分地与第二子图像重叠,并且更新表示第二子图像中不存在于第一子图像中的部分。 电路还具有被配置为在第一时间间隔期间的输出电路,使用第一表示来生成表示第一子图像的输出信号,并且在第二时间间隔期间,使用第二表示来生成表示第二子图像的输出信号 。
    • 8. 发明申请
    • Artificial intelligence systems for identifying objects
    • 用于识别物体的人工智能系统
    • US20090116747A1
    • 2009-05-07
    • US11498531
    • 2006-08-01
    • Tuan A. DuongVu A. DuongAllen R. Stubberud
    • Tuan A. DuongVu A. DuongAllen R. Stubberud
    • G06K9/46
    • G06K9/6247G06K9/32
    • A process for object identification comprising extracting object shape features and object color features from digital images of an initial object and storing the extracted object shape features and object color features in a database where said extracted object shape features and object color features are associated with a unique identifier associated with said object and repeating the first step for a plurality of different objects. Then extracting object shape features and object color features from a digital image of an object whose identity is being sought and correlating the extracted object shape features and object color features of the object whose identity is being sought with the extracted object shape features and object color features previously stored in the database. If a first correlation of the extracted object shape features is better than a first threshold value for a given object associated with an identifier in the database and if a second correlation of the extracted object color features is better than a second threshold value for the given object, then making a determination that the object whose identity is being sough is said given object.
    • 一种用于对象识别的过程,包括从初始对象的数字图像中提取对象形状特征和对象颜色特征,并将提取的对象形状特征和对象颜色特征存储在数据库中,其中所提取的对象形状特征和对象颜色特征与唯一 标识符,并且针对多个不同的对象重复第一步骤。 然后从正在寻找其身份的对象的数字图像中提取对象形状特征和对象颜色特征,并将所提取的对象形状特征和正在寻找其身份的对象的对象颜色特征与提取的对象形状特征和对象颜色特征相关联 以前存储在数据库中。 如果提取的对象形状特征的第一相关性优于与数据库中的标识符相关联的给定对象的第一阈值,并且如果提取的对象颜色特征的第二相关性优于给定对象的第二阈值 ,然后确定其身份正确的对象是所述给定对象。
    • 9. 发明授权
    • Artificial neural network with hardware training and hardware refresh
    • 具有硬件训练和硬件刷新的人造神经网络
    • US06513023B1
    • 2003-01-28
    • US09412199
    • 1999-10-01
    • Tuan A. Duong
    • Tuan A. Duong
    • G06N302
    • G06N3/08G06N3/063
    • A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network's coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.
    • 提供具有能够进行电荷存储的多个电路的神经网络电路。 还提供了多个电路,每个电路都耦合到多个电荷存储电路中的至少一个,并被构造为根据神经元传递函数产生输出。 多个电路中的每一个耦合到所述多个神经元传递函数电路中的一个,并被构造为生成所述输出的导数。 权重更新电路基于来自多个传递函数电路的输出并从多个微分电路输出来更新电荷存储电路。 在优选实施例中,单独的训练和验证网络共享同一组电荷存储电路并且可以同时操作。 验证网络具有各自耦合到电荷存储电路的单独的传递函数电路,以便将多个电荷存储器的训练网络的耦合复制到多个传递函数电路。 可以构造多个传递函数电路,每个具有跨导放大器,其提供组合的差分电流,以根据传递函数提供输出。 导数电路可以具有构造为产生组合的偏置差分电流以便提供传递函数的导数的电路。