会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method of forming a package for MEMS-based fuel cell
    • 形成用于基于MEMS的燃料电池的封装的方法
    • US08445148B2
    • 2013-05-21
    • US10952260
    • 2004-09-27
    • Jeffrey D. MorseAlan F. Jankowski
    • Jeffrey D. MorseAlan F. Jankowski
    • H01M8/18
    • H01M8/247H01M8/04007H01M8/2404H01M8/241Y10T29/49108Y10T29/4911Y10T29/49112Y10T29/49114Y10T29/53135Y10T156/1057
    • A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
    • 公开了一种基于MEMS的燃料电池组件及其方法。 燃料电池组件包括七层:(1)一个子包装燃料储存器界面层,(2)一个阳极歧管支撑层,(3)燃料/阳极歧管和电阻加热器层,(4)厚膜微孔流 包含燃料电池的主体结构层,(5)空气歧管层,(6)阴极歧管支撑结构层,和(7)盖。 具有多于一个燃料电池的燃料电池组件通过将这些层的堆叠定位成串联和/或平行而形成。 诸如模制塑料或陶瓷生胶带材料的燃料电池封装材料可以被图案化,对准和堆叠以形成三维微流体通道,其提供来自各种层的电馈通,这些层通过粘合在一起并机械地支撑基于MEMS的微型燃料电池 。 该封装包含电阻加热元件以控制燃料电池堆的温度。 烧结包装以形成层之间的结合,并且将一个或多个含有燃料电池的微孔流动主体结构插入到包装的厚膜微孔流动主体结构层内。
    • 7. 发明授权
    • Solid polymer MEMS-based fuel cells
    • 固体聚合物基于MEMS的燃料电池
    • US07361424B2
    • 2008-04-22
    • US10637915
    • 2003-08-08
    • Alan F. JankowskiJeffrey D. Morse
    • Alan F. JankowskiJeffrey D. Morse
    • H01M8/06H01M8/04
    • H01M8/1097H01M8/1213H01M8/1286H01M8/241H01M8/2425H01M8/2485H01M2008/1293H01M2300/0074H01M2300/0082
    • A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
    • 一种用于电力应用的基于微机电系统(MEMS)的薄膜燃料电池。 基于MEMS的燃料电池可以是固体氧化物型(SOFC),固体聚合物类型(SPFC)或质子交换膜型(PEMFC),并且每个燃料电池基本上由阳极和阴极分开 电解质层。 电解质层可以由固体氧化物或固体聚合物材料组成,也可以使用质子交换膜电解质材料。 此外,催化剂层还可以将电极(阴极和阳极)与电解质分离。 气体歧管用于将燃料和氧化剂输送到每个电池并提供废气的路径。 从每个电池产生的电流被吸入,与气体歧管集成的互连和支撑结构。 燃料电池利用集成的电阻加热器来有效地加热材料。 通过将MEMS技术与薄膜沉积技术相结合,可以生产具有微流通道和全集成电路的薄膜燃料电池,这将降低工作温度,与目前已知的燃料电池相比,功率密度将达到一个数量级。
    • 8. 发明授权
    • Method of fabrication of electrodes and electrolytes
    • 电极和电解质的制造方法
    • US06673130B2
    • 2004-01-06
    • US09881952
    • 2001-06-15
    • Alan F. JankowskiJeffrey D. Morse
    • Alan F. JankowskiJeffrey D. Morse
    • H01M600
    • H01M4/8885H01M4/8621H01M4/90H01M4/9033H01M4/92H01M8/1007H01M8/1231H01M8/1246Y02E60/525Y02P70/56Y10T29/49115
    • Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.
    • 燃料电池堆包含在电极层的顶部和底部包围的电解质层。 制备多孔电极,使得燃料和氧化剂容易地流到相应的电极 - 电解质界面,而不需要高温或高压来帮助流动。 刚性惰性微球与薄膜金属沉积技术相结合,用于制造多孔阳极,阴极和电解质。 容纳在液体中的微透镜随机分散到主体结构上并干燥,使得微粒保持在适当的位置。 随后采用薄膜沉积技术将金属层沉积到微孔上。 在这种金属层沉积之后,去除微球,留下金属层中的空隙,即孔隙,从而形成多孔电极。 制造过程的连续重复导致连续燃料电池堆的形成。 这种堆叠可以产生从约0.1瓦到约50瓦的功率输出。
    • 10. 发明授权
    • Method for fabrication of electrodes
    • 电极制造方法
    • US06753036B2
    • 2004-06-22
    • US09906913
    • 2001-07-16
    • Alan F. JankowskiJeffrey D. MorseRandy Barksdale
    • Alan F. JankowskiJeffrey D. MorseRandy Barksdale
    • B05D302
    • H01M4/8885H01M8/1004H01M8/1213H01M2008/1293Y10T29/49108Y10T29/49115
    • Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.
    • 这里描述了制造用于燃料电池和燃料电池堆的多孔薄膜电极的方法。 此外,该方法可以用于利用连续电解质层的所有燃料电池电解质材料。 通过从主体结构的底部流动气体(例如氩),同时将导电材料沉积到主体结构的顶侧上,将电极层沉积在多孔主体结构上。 通过控制通过孔的气体流速以及薄膜电极材料的工艺条件和沉积速率,可以形成预定厚度的膜。 一旦形成多孔电极,就沉积连续的电解质薄膜,然后沉积第二多孔电极以完成燃料电池结构。