会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Optical code division multiplexing communication method and system
    • 光码分复用通信方法及系统
    • US20060039701A1
    • 2006-02-23
    • US11185935
    • 2005-07-21
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • H04J14/00H04J4/00
    • H04J14/005
    • An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    • 光码分复用通信方法包括以下步骤:从波长复用脉冲产生多波长光脉冲串; 使用时间扩展/波长跳跃方法通过传输线传输多波长光脉冲串; 解码通过传输线传输的多波长光脉冲串的波长复用脉冲; 补偿多波长光脉冲序列的各个光脉冲之间的延迟时间差,在通过传输线传输多波长光脉冲串的步骤中发生的延迟时间差; 以及在通过传输线传输多波长光脉冲串的步骤中补偿在多波长光脉冲串的每个光脉冲中发生的时间方向上的光脉冲扩展。
    • 2. 发明授权
    • Optical code division multiplexing communication method and system
    • 光码分复用通信方法及系统
    • US07424226B2
    • 2008-09-09
    • US11185935
    • 2005-07-21
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • Akihiko NishikiKensuke SasakiShuko KobayashiSatoko Kutsuzawa
    • H04J14/02H04B10/12H04B10/00
    • H04J14/005
    • An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    • 光码分复用通信方法包括以下步骤:从波长复用脉冲产生多波长光脉冲串; 使用时间扩展/波长跳跃方法通过传输线传输多波长光脉冲串; 解码通过传输线传输的多波长光脉冲串的波长复用脉冲; 补偿多波长光脉冲序列的各个光脉冲之间的延迟时间差,在通过传输线传输多波长光脉冲串的步骤中发生的延迟时间差; 以及在通过传输线传输多波长光脉冲串的步骤中补偿在多波长光脉冲串的每个光脉冲中发生的时间方向上的光脉冲扩展。
    • 4. 发明授权
    • Optical pulse time spreading device
    • 光脉冲时间扩展装置
    • US07310465B2
    • 2007-12-18
    • US11520661
    • 2006-09-14
    • Akihiko NishikiKensuke SasakiShuko Kobayashi
    • Akihiko NishikiKensuke SasakiShuko Kobayashi
    • G02B6/34
    • G02B6/2932G02B6/02085H04J14/005
    • The present invention is an SSFBG with which there are few restrictions on the code that can be set and the overall length of which is short. This SSFBG has four unit FBGs the Bragg reflection wavelengths of which are λ1, λ2, λ3, and λ4 disposed with a part where the unit FBGs overlap one another in the waveguide direction of the optical fiber. The left end of the horizontal axis corresponds to the position of the I/O terminal of the SSFBG and the right end of the horizontal axis corresponds to the terminal on the opposite side from the I/O terminal of the SSFBG. The Bragg reflection wavelengths λ1, λ2, λ3, and λ4 of the four unit FBGs are λ1=1543.28 nm, λ2=1543.60 nm, λ3=1543.92 nm, and λ4=1544.24 nm respectively. Codes (λ1, λ2, λ3, and λ4) used in the time-spreading/wavelength hopping system are established for the SSFBG by disposing the four unit FBGs at equal intervals such that the interval therebetween is 12.8 mm.
    • 本发明是一种SSFBG,其对于可以设置的代码的限制很少,并且其总长度短。 该SSFBG具有四个单位FBG,其布拉格反射波长是λ1,λ2,λ3和λ4, / SUB>,其中单元FBG在光纤的波导方向上彼此重叠的部分。 水平轴的左端对应于SSFBG的I / O端子的位置,水平轴的右端对应于与SSFBG的I / O端子相反的端子。 四个单位FBG的布拉格反射波长λ1,λ2,λ3 3和λ4 4是 λ1 = 1543.28nm,λ2 = 1543.60nm,λ3 = 1543.92nm,λ4 = 1544.24 nm。 用于时间扩展/解码的码(λ1,λ2,λ3,λ3和λ4) 通过以相等的间隔布置四个单元FBG,使得它们之间的间隔为12.8mm,为SSFBG建立了波长跳变系统。
    • 5. 发明申请
    • Fiber bragg grating system having a thermo module for supplying or absorbing heat to or from an FBG module
    • 具有用于向FBG模块供应或吸收热量的热模块的光纤布拉格光栅系统
    • US20080107379A1
    • 2008-05-08
    • US11806915
    • 2007-06-05
    • Shuko KobayashiKensuke Sasaki
    • Shuko KobayashiKensuke Sasaki
    • G02B6/34
    • G02B6/0218
    • An FBG system with lower power supplied to a temperature controller, while allowing for precise temperature control of an FBG grating. The FBG system includes a high temperature FBG-mounting structure and a low temperature FBG-mounting structure, and a housing containing them. The high temperature FBG-mounting structure includes an FBG module and a thermo module. The temperature of the FBG in the FBG module may be made higher than the environmental temperature by supplying heat from a heat-conducting portion to the thermo module. The low temperature FBG-mounting structure includes an FBG module and a thermo module. The temperature of the FBG in the latter FBG module may be made lower than the environmental temperature by supplying heat from the latter thermo module to the heat-conducting portion. The FBG-mounting structures are provided in parallel on the inner bottom surface of the heat-conducting portion, part of the housing.
    • 具有较低功率的FBG系统提供给温度控制器,同时允许对FBG光栅进行精确的温度控制。 FBG系统包括高温FBG安装结构和低温FBG安装结构,以及包含它们的外壳。 高温FBG安装结构包括一个FBG模块和一个热模块。 FBG模块中的FBG的温度可以通过从热传导部分向热模块供给热量而使其高于环境温度。 低温FBG安装结构包括一个FBG模块和一个热模块。 后者的FBG模块中的FBG的温度可以通过将热量从后一个热模块供给到导热部分而低于环境温度。 FBG安装结构平行设置在导热部分的内底面上,即壳体的一部分。
    • 6. 发明申请
    • Optical Pulse Time Spreader and Optical Code Division Multiplexing Transmission Device
    • 光脉冲时间扩展器和光分复用传输装置
    • US20070223927A1
    • 2007-09-27
    • US11587492
    • 2005-12-21
    • Kensuke SasakiAkihiko Nishiki
    • Kensuke SasakiAkihiko Nishiki
    • H04J14/08H04J14/00
    • H04J14/005
    • The ratio P/W between the peak value P and the subpeak value W of the autocorrelation waveform, and the ratio P/C between the peak value P of the autocorrelation waveform and the maximum peak value C of the cross correlation waveform are both large. The present invention comprises phase control means of a structure in which an SSFBG 40 having fifteen unit FBGs arranged in series in the waveguide direction is fixed to the core of the optical fiber 36 that comprises the core 34 and cladding 32. The difference Δn between the maximum and minimum of the effective refractive index of the optical fiber is 6.2×10−5. The phase difference of Bragg reflected light from two unit diffraction gratings that adjoin one another from front to back and provide equal code values is given by 2πM+(π/2) where M is an integer. Further, the phase difference of the Bragg reflected light from two unit diffraction gratings that adjoin one another from front to back and provide different code values is given by 2πM+(2N+1)π+(π/2) where M and N are integers.
    • 自相关波形的峰值P和副峰值W之间的比P / W以及自相关波形的峰值P与互相关波形的最大峰值C之间的比P / C都较大。 本发明包括一种结构的相位控制装置,其中具有在波导方向上串联布置的十五个单位FBG的SSFBG 40固定在包括芯34和包层32的光纤36的芯上。 光纤的有效折射率的最大值和最小值之间的差值Deltan为6.2×10 -5。 来自两个单元衍射光栅的布拉格反射光的相位差由前后相邻并提供相等的代码值由2piM +(pi / 2)给出,其中M是整数。 此外,来自两个单元衍射光栅的Bragg反射光的相位差由前后相邻并提供不同的代码值由2piM +(2N + 1)pi +(pi / 2)给出,其中M和N是整数。
    • 7. 发明申请
    • Optical code division multiplex communication method, system, and module
    • 光码分多址通信方式,系统和模块
    • US20090257750A1
    • 2009-10-15
    • US12379971
    • 2009-03-05
    • Shuko KobayashiKensuke Sasaki
    • Shuko KobayashiKensuke Sasaki
    • H04J14/00
    • H04J14/005H04B1/707H04B2201/70715
    • An optical communication system uses superstructured fiber Bragg gratings (SSFBGs) to encode and decode an optical pulse signal transmitted between two optical communication devices. Each SSFBG has uniformly spaced fiber Bragg gratings, producing a chip pulse train with a uniform phase difference between chips. The phase difference defines a code. There is one SSFBG at one of the two devices and two or more SSFBGs at the other device, using different codes to encode or decode the same optical signal. Using one code to encode and multiple codes to decode, or multiple codes to encode and one code to decode, provides a high signal-to-noise ratio and permits stable performance despite environmental temperature variations. For bidirectional communication, each communication device has at least three SSFBGs, divided into a transmitting group and a receiving group, mounted on a mounting plate with a negative thermal expansion coefficient.
    • 光通信系统使用超结构光纤布拉格光栅(SSFBG)来对在两个光通信设备之间传输的光脉冲信号进行编码和解码。 每个SSFBG具有均匀间隔的光纤布拉格光栅,产生芯片之间具有均匀相位差的芯片脉冲串。 相位差定义一个代码。 在两个设备中的一个设备上有一个SSFBG,另一个设备上有两个或更多个SSFBG,使用不同的代码对同一个光信号进行编码或解码。 使用一个代码进行编码和多个代码进行解码,或多个代码进行编码,一个代码进行解码,可提供高信噪比,尽管环境温度变化,仍能保持稳定的性能。 对于双向通信,每个通信设备具有至少三个SSFBG,分为传输组和接收组,安装在负热膨胀系数的安装板上。
    • 9. 发明申请
    • OPTICAL CODE DIVISION MULTIPLEX SIGNAL GENERATOR
    • 光学代码段多重信号发生器
    • US20100215370A1
    • 2010-08-26
    • US12695523
    • 2010-01-28
    • Shuko KOBAYASHIKensuke Sasaki
    • Shuko KOBAYASHIKensuke Sasaki
    • H04J14/00
    • H04J14/005H04B10/516
    • An optical code division multiplexing signal generator provided with an optical pulse light source, a first encoder to an Nth encoder, a first optical modulator to an Nth optical modulator, and a first optical circulator to an Nth optical circulator. The first optical circulator inputs an input optical pulse train to a first encoder, and inputs a first encoded optical pulse train output by Bragg reflection from the first encoder to the first optical modulator. The kth optical circulator inputs an input (k−1)th optical pulse train which has passed through the (k−1)th encoder to a kth encoder, and inputs a kth encoded optical pulse train output by Bragg reflection from the kth encoder to the kth optical modulator. Herein k takes all integers from 2 to N, and N is a positive integer of 2 or more.
    • 具有光脉冲光源的光码分复用信号发生器,第N编码器的第一编码器,第N光调制器的第一光调制器,第N光循环器的第一光循环器。 第一光循环器将输入光脉冲串输入到第一编码器,并且通过布拉格反射将第一编码光脉冲串输出从第一编码器输入到第一光调制器。 第k个光循环器将已经通过第(k-1)个编码器的输入(k-1)光脉冲串输入第k个编码器,并通过布拉格反射从第k个编码器输入第k个编码的光脉冲串, 第k个光调制器。 这里k取从2到N的所有整数,N是2或更大的正整数。
    • 10. 发明申请
    • Wavelength tuning device and wavelength tuning method
    • 波长调谐装置和波长调谐方法
    • US20070092182A1
    • 2007-04-26
    • US11543211
    • 2006-10-05
    • Shuko KobayashiKensuke Sasaki
    • Shuko KobayashiKensuke Sasaki
    • G02B6/34
    • G02B6/02209G02B6/02204
    • A wavelength tuning device of the invention tunes the reflected wavelength of a fiber Bragg grating, and includes: an optical fiber (102) in which a fiber Bragg grating (106) is formed; a base member (104) to which the optical fiber (102 is fixed; a first temperature sensor (112) that detects a temperature of the base member (104); a thermo-module (116) that adjust the temperature of the base member (104) such that the temperature detected by the first temperature sensor (112) is maintained at a desired temperature; a second temperature sensor (126) that detects an external temperature of the wavelength tuning device; and a temperature controller (130) that controls the thermo-module (116) such that the temperature of the base member (104) is maintained at the desired temperature based on the external temperature detected by the second temperature sensor (126).
    • 本发明的波长调谐装置调谐光纤布拉格光栅的反射波长,并包括:形成光纤布拉格光栅(106)的光纤(102); 固定有光纤(102)的基座部件(104),检测基体部件(104)的温度的第一温度传感器(112);调节基体部件 (104),使得由第一温度传感器(112)检测的温度保持在期望温度;第二温度传感器(126),其检测波长调谐装置的外部温度;以及温度控制器(130),其控制 所述热模块(116)使得所述基座部件(104)的温度基于由所述第二温度传感器(126)检测到的外部温度而保持在所需温度。