会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • INTEGRATED EXCITATION AND TURBINE CONTROLLER FOR SYNCHRONOUS GENERATOR AND CONTROL METHOD THEREOF
    • 用于同步发电机的集成激励和涡轮控制器及其控制方法
    • WO2012055115A1
    • 2012-05-03
    • PCT/CN2010/078244
    • 2010-10-29
    • ABB RESEARCH LTD.CHEN, YaoPAN, JiupingSAO, CharlesGERTMAR, Lars
    • CHEN, YaoPAN, JiupingSAO, CharlesGERTMAR, Lars
    • H02P6/00
    • H02P9/04H02P9/105
    • An integrated excitation and turbine controller (23) for a synchronous generator (20) and a control method thereof are provided. The method comprises following steps: categorizing the fault severity according to the accelerating energy caused by the power mismatch; detecting the generator operation mode according to the signs of power angle derivation and the directions of electromagnetic power; calculating the auxiliary excitation voltage according to the fault severity and the generator operation mode; calculating the auxiliary governor valve opening according to the fault severity and the generator operation mode; and calculating the intercept valve opening according to the fault severity and the generator operation mode. The disturbance severity categorization and the generator operation mode are both considered in the method based on the local measurements (29) so as to determine the best combination of the auxiliary excitation and the turbine control under various system disturbances and operation conditions. The outputs of the integrated excitation and turbine controller (23) will be added into the existing generator controllers for generator transient stability enhancement and dynamic performance improvement. When the disturbances disappear, the outputs of the integrated excitation and turbine controller (23) will be phased out automatically so as to minimize the impacts on the generator steady-state voltage and the frequency regulations.
    • 提供了一种用于同步发电机(20)的集成激励和涡轮机控制器(23)及其控制方法。 该方法包括以下步骤:根据功率失配引起的加速能量对故障严重程度进行分类; 根据功率角推导的标志和电磁方向检测发电机工作模式; 根据故障严重程度和发电机工作模式计算辅助励磁电压; 根据故障严重程度和发电机运行模式计算辅助调节阀开度; 并根据故障严重程度和发电机运行模式计算截流阀开度。 在基于局部测量的方法中考虑了扰动严重性分类和发电机运行模式(29),以便在各种系统扰动和运行条件下确定辅助励磁和涡轮机控制的最佳组合。 集成励磁和涡轮机控制器(23)的输出将被添加到现有的发电机控制器中,用于发电机瞬态稳定性增强和动态性能改进。 当干扰消失时,集成励磁和涡轮机控制器(23)的输出将自动逐步淘汰,以便最小化对发电机稳态电压和频率规定的影响。
    • 5. 发明申请
    • WIND FARM CONDITION MONITORING METHOD AND SYSTEM
    • 风力农业条件监测方法与系统
    • WO2016086360A1
    • 2016-06-09
    • PCT/CN2014/092813
    • 2014-12-02
    • ABB TECHNOLOGY LTDCHEN, NiyaYU, RongrongCHEN, Yao
    • CHEN, NiyaYU, RongrongCHEN, Yao
    • G01R31/34F03D7/00
    • F03D17/00F03D7/045F03D7/048F05B2260/84G01R31/34G05B23/021G05B23/0254Y02E10/723
    • A wind farm condition monitoring method and system, comprises: acquiring historical SCADA data, and/or historical sensor data received from sensors which are installed in a wind farm, and historical wind turbine status which indicate wind turbines historical status (101); selecting algorithm for all types of historical data sources according to pre-defined basic rules, training different models for different historical data sources to establish relationship between the historical data sources and the historical wind turbine status (102); acquiring real time SCADA data and/or real time sensor data as real time data source, selecting the trained model depending on type of the real time data source, inputting the real time data source to the selected trained model, obtaining the real time wind turbine status (103).
    • 一种风电场状态监测方法和系统,包括:获取历史SCADA数据和/或从安装在风电场中的传感器接收的历史传感器数据,以及指示风力涡轮机历史状态的历史风力涡轮机状态(101); 根据预定义的基本规则为所有类型的历史数据源选择算法,为不同的历史数据源训练不同的模型,建立历史数据源与历史风力发电机状态之间的关系(102); 以实时数据源获取实时SCADA数据和/或实时传感器数据,根据实时数据源的类型选择经过训练的模型,将实时数据源输入到选定的训练模型,获取实时风力发电机 状态(103)。
    • 6. 发明申请
    • WIND TURBINE CONDITION MONITORING METHOD AND SYSTEM
    • 风力涡轮机状态监测方法与系统
    • WO2016077997A1
    • 2016-05-26
    • PCT/CN2014/091425
    • 2014-11-18
    • ABB TECHNOLOGY LTDYU, RongrongCHEN, NiyaCHEN, Yao
    • YU, RongrongCHEN, NiyaCHEN, Yao
    • F03D7/00G01M13/00
    • F03D17/00F05B2260/80F05B2260/83F05B2260/84G06N99/005
    • A wind turbine condition monitoring method and system. The method comprises the following steps: acquiring historical SCADA data, and wind turbine reports corresponding to the historical SCADA data, wherein the historical SCADA data covers operation data of the wind turbine, and wherein the wind turbine reports covers: health condition of wind turbine diagnosed as normal or defective status, and defective component with corresponding fault details if health condition of wind turbine is diagnosed as defective status; model training step: training an overall model for overall diagnosing the wind turbine, and training different individual models for analyzing different components of the wind turbine based on the historical SCADA data and the corresponding wind turbine report, by establishing relationship between the historical SCADA data and the wind turbine report; overall diagnosing step: acquiring real time SCADA data, inputting the real time SCADA data to the trained overall model, obtaining the health condition of the wind turbine from the trained overall model, and performing individual diagnosing step if the trained overall model determines wind turbine as defective status; individual diagnosing step: inputting the real time SCADA data to the trained individual model corresponding to the defective component, and obtaining the fault details of the defective component from the trained individual model corresponding to the defective component. The method can benefit wind turbine operator in terms of saving installation of additional monitoring sensors due to pure SCADA-data-driven technology and accelerating algorithm execution efficiency due to hierarchical concept structure.
    • 风力发电机状况监测方法及系统。 该方法包括以下步骤:获取历史SCADA数据和与历史SCADA数据相对应的风力发电机报告,其中历史SCADA数据涵盖风力涡轮机的运行数据,其中风力涡轮机报告涵盖:诊断的风力涡轮机的健康状况 作为正常或缺陷状态,以及如果风力涡轮机的健康状况被诊断为缺陷状态,则具有相应故障细节的缺陷部件; 模型训练步骤:根据历史SCADA数据和相应的风力发电机报告,通过建立历史SCADA数据与历史SCADA数据之间的关系,对整个风力发电机组的整体诊断情况进行整体模拟,并对不同的风力发电机组成分进行分析。 风力发电机报告; 总体诊断步骤:获取实时SCADA数据,将实时SCADA数据输入到训练有素的整体模型,从训练有素的整体模型中获取风力发电机的健康状况,并且如果训练有素的整体模型将风力发电机确定为 缺陷状态; 单独诊断步骤:将实时SCADA数据输入到与故障组件对应的经过训练的个人模型,并从与缺陷组件对应的经过训练的单独模型中获得缺陷组件的故障细节。 由于采用纯SCADA数据驱动技术,由于分层概念结构,加速了算法执行效率,该方法可以有利于风力发电机运行人员的节省安装附加监控传感器。
    • 9. 发明申请
    • METHOD AND SYSTEM FOR CONTROLLING COOLING SYSTEM OF POWER EQUIPMENT
    • 控制动力设备冷却系统的方法和系统
    • WO2017132981A1
    • 2017-08-10
    • PCT/CN2016/073620
    • 2016-02-05
    • ABB SCHWEIZ AGCHEN, YaoCHEN, NiyaYU, Rongrong
    • CHEN, YaoCHEN, NiyaYU, Rongrong
    • H01F27/08
    • H01F27/08
    • It provides a method for controlling cooling system of a power equipment and a system using the same. The method includes steps of: obtaining a first data set representing operational cost related parameters specific to the power equipment and its cooling system at a series of time intervals of a first load cycle in a history profile; obtaining a second data set representing operational cost related parameters specific to the power equipment and its cooling system at a series of time intervals of a second load cycle in the history profile, where the second load cycle follows the first load cycle; in consideration of the parameters represented by the first data set, through knowledge-based predetermined numerical and/or logical linkages, establishing a third data set representing optimal cooling capacity parameters for the cooling system at the series of time intervals of the first load cycle according to criteria for operational cost optimization of the power equipment; in consideration of the parameters represented by the second data set, through knowledge-based predetermined numerical and/or logical linkages, establishing a fourth data set representing optimal cooling capacity parameters for the cooling system at the series of time intervals of the second load cycle according to criteria for operational cost optimization of the power equipment; establishing a fifth data set representing a cooling capacity parameter difference between the established cooling capacity parameters concerning the first load cycle and the second load cycle; establishing a sixth data set representing cooling capacity parameters for the cooling system at a series of time intervals of a present load cycle by computationally correcting the established cooling capacity parameter concerning the time intervals of the second cycle load with use of the cooling capacity parameter difference; and controlling the cooling system to operate at a series of time intervals of the present load cycle at the established cooling capacity parameters concerning the present load cycle represented by the sixth data set.
    • 提供了一种用于控制电力设备的冷却系统的方法和使用该方法的系统。 该方法包括以下步骤:在历史简档中以第一加载周期的一系列时间间隔获得表示与该电力设备及其冷却系统相关的特定于运行成本的参数的第一数据集; 在所述历史简档中的第二加载周期的一系列时间间隔处获得表示所述电力设备及其冷却系统特有的与运行成本相关的参数的第二数据集,其中所述第二加载周期遵循所述第一加载周期; 考虑到由第一数据集表示的参数,通过基于知识的预定数值和/或逻辑链接,建立第三数据集,其表示在第一负载循环的一系列时间间隔处针对冷却系统的最佳冷却能力参数, 以电力设备的运营成本优化标准; 考虑到由第二数据集表示的参数,通过基于知识的预定数值和/或逻辑链接,建立第四数据集,其表示在第二负载循环的一系列时间间隔处针对冷却系统的最佳冷却能力参数, 以电力设备的运营成本优化标准; 建立代表关于所述第一负载循环和所述第二负载循环的所述已建立的冷却能力参数之间的冷却能力参数差异的第五数据集; 通过使用所述冷却能力参数差计算校正关于所述第二循环负荷的时间间隔的所述建立的冷却能力参数,在当前负荷循环的一系列时间间隔处建立表示所述冷却系统的冷却能力参数的第六数据集; 并且控制冷却系统以当前负载循环的一系列时间间隔在关于由第六数据组表示的当前负载循环的既定冷却能力参数下运行。