会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • 터널 굴착면 밀착형 격자지보재 및 이를 이용한 터널 굴착면 지보공의 시공방법
    • 用于隧道的钢格栅梁和用于支撑钢格栅的隧道开口的方法
    • KR1020120061417A
    • 2012-06-13
    • KR1020100122732
    • 2010-12-03
    • 지에스건설 주식회사
    • 채광석이상필
    • E21D11/22E21D11/40
    • PURPOSE: A steel lattice girder for a tunnel and a construction method of a tunnel support using the same are provided to improve structural stability by preventing a concentrated load from being applied to a point of the steel lattice girder. CONSTITUTION: A steel lattice girder(1) for a tunnel comprises a first bar(11), a second bar(12), a third bar(13), lattice joints(14), and contact support members. The first bar is curved depending on the curvature of the excavated surface of a tunnel. The second and third bars are arranged in an inverse-triangular shape. The lattice joints connect the first, second, and third bars to each other. The contact support members are formed on the tops of the second and third bars and directly touch the excavated surface of the tunnel.
    • 目的:提供一种用于隧道的钢格栅梁和使用其的隧道支撑的施工方法,以通过防止集中的载荷施加到钢格栅梁的点来提高结构稳定性。 构造:用于隧道的钢格栅梁(1)包括第一杆(11),第二杆(12),第三杆(13),格子接头(14)和接触支撑构件。 第一个杆根据隧道挖掘表面的曲率而弯曲。 第二和第三条布置成反三角形。 格子接头将第一,第二和第三条杆彼此连接。 接触支撑构件形成在第二和第三杆的顶部上并且直接接触隧道的挖掘表面。
    • 4. 发明授权
    • 복합 발전을 연계한 복합 열원 히트 펌프 냉난방 방법
    • 一体化发电系统用于冷却和加热的混合热泵系统
    • KR100893828B1
    • 2009-04-20
    • KR1020070111809
    • 2007-11-02
    • 지에스건설 주식회사(주)이에스
    • 박시삼윤성욱나상민채광석신경수이정계윤중
    • F25B30/06F25B30/00
    • An integrated heat sources hybrid heat pump system connecting with an integrated power generation system is provided to steadily supply the electricity regardless of the energy environment by operating a generator to the mutual complementary. An integrated heat sources hybrid heat pump system connecting with an integrated power generation system comprises a subterranean heat circulation circuit and a sewage waste heat circulation circuit. A heated water circulating circuit and a cold water circulating circuit are thermally connected to each other. The heated water circulating circuit supplies the heat to a water store tank(30) and accumulates the heat by operating a heat pump(50). The cold water circulating circuit supplies the cold to a cold water store tank(40) and accumulates the cold. The heated water circulating circuit fills up the heat by adding a hot-water circulation circuit of the waste heat generated by a boiler(20). A heating circular water piping is connected to the hot-water store tank through a heat exchanger(51) of the heat pump. The cold water circulating circuit fills up the cold from an air heat source heated water circulating circuit.
    • 提供与综合发电系统连接的集成热源混合式热泵系统,通过将发电机运行到相互补充的方式,不论能源环境如何,均可稳定供电。 与集成发电系统连接的综合热源混合式热泵系统包括地下热循环回路和污水废热循环回路。 加热水循环回路和冷水循环回路彼此热连接。 加热水循环回路通过操作热泵(50)将热量供给储水箱(30)并蓄热。 冷水循环回路将冷水供给冷水储存罐(40),并蓄冷。 加热水循环回路通过添加由锅炉(20)产生的废热的热水循环回路来填充热量。 加热循环水管道通过热泵的热交换器(51)连接到热水储罐。 冷水循环回路从空气热源加热水循环回路充满冷气。
    • 6. 发明授权
    • 에너지 절약형 열병합 발전 시스템
    • 能源节约型加气系统
    • KR100812496B1
    • 2008-03-11
    • KR1020070111807
    • 2007-11-02
    • 지에스건설 주식회사(주)이에스
    • 박시삼윤성욱나상민채광석신경수이정계윤중
    • F24D10/00
    • Y02E20/14F24D10/003F24D2200/13F24D2220/0235Y02B30/16Y02P80/14
    • A cogeneration system capable of saving energy is provided to improve heat exchange efficiency and to improve heat storage efficiency by using a heat collecting pipe lines. A cogeneration system capable of saving energy comprises a cogeneration unit(10), distributors(14,15), a circulation pump, a cooling tower(20), a hot water storage tank(40), and an auxiliary boiler(30). The distributors supply and re-circulate hot circulating water. The circulation pump circulates hot water forcedly. The cooling tower supplies cooling water for an engine to the cogeneration unit. The distributor, the circulation pump and the cooling tower are consecutively connected and forms a hot water circulating fundamental pipe. The hot water storage tank is installed between the distributors. A hot water supply pipe is extended to pass through the hot water storage tank. A hot water circulating pipe is additionally formed to share heat with the hot water supply pipe. A hot water heat supplementing pipe which is passing through the circulation pump and the auxiliary boiler, is formed at the hot water re-circulate distributor. A heat supplementing hot water circulation pipe heats up the hot water storage tank and supplies cooling water to the cogeneration unit, and supplements insufficient heat to the auxiliary boiler.
    • 提供一种能够节约能源的热电联供系统,以提高热交换效率,并通过使用集热管线提高蓄热效率。 能够节约能源的热电联产系统包括热电联产单元(10),分配器(14,15),循环泵,冷却塔(20),热水储存箱(40)和辅助锅炉(30)。 经销商供应和循环热循环水。 循环泵强制循环热水。 冷却塔向发电机组提供发动机的冷却水。 分配器,循环泵和冷却塔连续连接,形成热水循环基管。 热水储存箱安装在分销商之间。 热水供应管延伸通过热水储存箱。 另外形成热水循环管道以与热水供应管道共用热量。 在热水再循环分配器上形成通过循环泵和辅助锅炉的热水补热管。 补热热水循环管道加热热水储存箱,向热电联供装置供水,并向辅助锅炉补充不足的热量。
    • 8. 发明公开
    • 전도성 나노 입자를 이용한 이산화탄소 거동 모니터링 장치 및 방법
    • 用于记录二氧化碳利用导电纳米颗粒的行为的装置和方法
    • KR1020150012910A
    • 2015-02-04
    • KR1020130089079
    • 2013-07-26
    • 지에스건설 주식회사
    • 채광석하희상
    • G01N27/72
    • 전도성 나노 입자를 이용한 이탄화탄소 거동 모니터링 장치 및 방법이 개시된다.
      본 발명의 일 실시예에 따르면, 지중의 저류층과 연통하도록 형성되며, 이산화탄소를 상기 저류층에 주입하는 주입관; 상기 저류층과 연통하도록 형성되며, 원유를 추출하는 생산관; 상기 주입관 및 상기 생산관 중 어느 하나 이상에 설치되며 전자기파를 발생시키는 전자기파 발신부; 상기 주입관 및 상기 생산관 중 어느 하나 이상에 설치되며, 상기 전자기파 발신부에서 발신된 전자기파를 수신하는 전자기파 수신부; 및 상기 전자기파 수신부에 전기적으로 연결되어 전자기파 데이터를 분석하기 위한 분석기를 포함하고, 상기 주입관으로 주입되는 이산화탄소에는 전자기적 특성을 갖는 나노입자가 포함되어 있으며, 상기 분석기는 상기 나노입자의 영향에 의해 변화되는 전자기파 특성을 분석하는 것을 특징으로 하는 전도성 나노 입자를 이용한 이산화탄소 거동 모니터링 장치가 제공될 수 있다.
    • 公开了一种用于使用导电纳米颗粒监测二氧化碳的运动的装置和方法。 根据本发明的一个实施例,一种用于监测使用导电纳米颗粒的二氧化碳运动的装置,包括形成为连接到地下下电流层并将二氧化碳注入下电流层的注入管; 生产管道,形成为连接到下流层并提取原油; 安装在喷射管和生产管之间的至少一个并产生电磁波的电磁波发射单元; 电磁波接收单元,其安装在所述喷射管和所述生产管之间的至少一个上并接收由所述电磁波发射单元发射的电磁波; 并且可以提供与电磁波接收单元电连接并分析电磁波数据的分析器。 用于监测使用导电纳米颗粒的二氧化碳运动的装置的特征在于,由注射管注入的二氧化碳包括具有电磁特征的纳米颗粒,分析仪分析受纳米颗粒影响的电磁波的特征。
    • 9. 发明授权
    • 무마찰 파일 설치방법
    • 零摩擦片的构造方法
    • KR101420961B1
    • 2014-07-21
    • KR1020130001159
    • 2013-01-04
    • 지에스건설 주식회사
    • 채광석
    • E02D7/22E02D27/35E02D5/56
    • E02D7/22E02D5/56E02D27/35E02D2200/14
    • The present invention relates to a method for constructing a friction-free pile and, more particularly, to a method for constructing a friction-free pile comprising: a position setting step of setting a construction position of a friction-free pile on the ground which has a constant-temperature layer which is not changed due to climate changes and an active layer which is located above the constant-temperature layer and is changed by climate changes; an active layer excavating step of excavating the active layer of preset strata; a pile body installing step of installing a pile body in the constant-temperature layer in which the active layer is excavated in order for the upper end part of the pile body to protrude from the active layer; a moving body and bearing means installing step of installing a bearing means and a moving body outside the pile body located at the active layer to be able to move along the pile body at the time of expansion or contraction of the active layer by freezing or thawing; and a covering step of filling and finishing a space between the outside of the moving body and the excavated active layer. According to the present invention, the constructing method can reduce work periods and expenses due to the simple structure and easy installation because the bearing means and the moving body are installed after the active layer is first excavated and the pile body is rotated and directly installed in an eternal frozen earth layer. Moreover, the constructing method can maintain the fixing position of the pile body because an external force generated by expansion or contraction of the active layer according to temperature changes can be relieved and blocked by the moving body which is moved along the pile body by the bearing means. The constructing method also prevents a damage of facilities installed on the pile and reduces maintenance costs because addition electric power is not used.
    • 本发明涉及一种构造无摩擦桩的方法,更具体地说,涉及一种构成无摩擦桩的方法,该方法包括:设置在地面上的无摩擦桩的施工位置的位置设定步骤, 具有由于气候变化而不变化的恒温层和位于恒温层上方且由气候变化而变化的活性层; 挖掘预置地层有源层的有源层挖掘步骤; 桩体安装步骤,其将堆体安装在所述有源层被挖掘的恒温层中,以使桩体的上端部从活性层突出; 移动体和轴承装置安装步骤,其将轴承装置和移动体安装在位于活性层的堆体外部,以便能够通过冷冻或解冻在活性层膨胀或收缩时沿着桩体移动 ; 以及填充和整理移动体的外部和挖掘的活性层之间的空间的覆盖步骤。 根据本发明,施工方法由于结构简单,安装方便,可以减少工作周期和费用,因为在有源层首次被挖掘之后安装了轴承装置和移动体,并且将桩体旋转直接安装在 永恒的冷冻地球层。 此外,构造方法可以保持桩体的固定位置,因为根据温度变化的活性层的膨胀或收缩产生的外力可以被移动体释放和阻止,所述移动体通过轴承沿着桩体移动 手段。 施工方法还可以防止安装在桩上的设备的损坏,并降低维护成本,因为不使用附加电力。
    • 10. 发明授权
    • 광섬유센서를 활용한 터널 막장 선행침하량 측정시스템 및 그 설치방법
    • 使用光纤传感器的隧道面预测位移测量系统及其安装方法
    • KR101042076B1
    • 2011-06-16
    • KR1020100095835
    • 2010-10-01
    • 지에스건설 주식회사주식회사 이제이텍
    • 이상필채광석
    • G01B11/16G01L1/24E21D9/00
    • PURPOSE: A system for measuring the pre-displacement of a tunnel face using an optical fiber sensor and an installation method thereof are provided to precisely measure displacement by corresponding to ground subsidence. CONSTITUTION: A system for measuring the pre-displacement of a tunnel face using an optical fiber sensor comprises protective casings, a housing(100), an optical fiber sensor(200), an expansion unit(300), and a controller(400). A measurement hole(30) is formed in the timbering of a tunnel face(20) using a boring machine. The protective casings are inserted along the measurement hole. The housing has an installation space. The optical fiber sensor is installed along the installation space. The expansion unit covers the housing and has an injection space which can be expanded and contracted. The controller calculates the pre-displacement of the tunnel face by receiving a single from the optical fiber sensor.
    • 目的:提供一种用于使用光纤传感器测量隧道面的前置位移的系统及其安装方法,以通过对应于地面沉降来精确地测量位移。 构成:使用光纤传感器测量隧道面的预位移的系统包括保护壳体,壳体(100),光纤传感器(200),膨胀单元(300)和控制器(400) 。 使用镗床在隧道面(20)的木材中形成测量孔(30)。 保护套沿测量孔插入。 外壳有一个安装空间。 光纤传感器沿安装空间安装。 扩展单元覆盖壳体并具有可扩展和收缩的注入空间。 控制器通过从光纤传感器接收单个来计算隧道面的预位移。