会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Video concept detection using multi-layer multi-instance learning
    • 使用多层多实例学习的视频概念检测
    • US08804005B2
    • 2014-08-12
    • US12111202
    • 2008-04-29
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • G06K9/62G06K9/34
    • G11B27/28G06K9/00711G06K9/6282
    • Visual concepts contained within a video clip are classified based upon a set of target concepts. The clip is segmented into shots and a multi-layer multi-instance (MLMI) structured metadata representation of each shot is constructed. A set of pre-generated trained models of the target concepts is validated using a set of training shots. An MLMI kernel is recursively generated which models the MLMI structured metadata representation of each shot by comparing prescribed pairs of shots. The MLMI kernel is subsequently utilized to generate a learned objective decision function which learns a classifier for determining if a particular shot (that is not in the set of training shots) contains instances of the target concepts. A regularization framework can also be utilized in conjunction with the MLMI kernel to generate modified learned objective decision functions. The regularization framework introduces explicit constraints which serve to maximize the precision of the classifier.
    • 视频剪辑中包含的视觉概念基于一组目标概念进行分类。 剪辑被分割成镜头,并且构建每个镜头的多层多实例(MLMI)结构化元数据表示。 使用一组训练镜头验证了一组预先生成的目标概念训练模型。 通过比较规定的拍摄对,递归地生成MLMI内核,以对每个镜头的MLMI结构化元数据表示进行建模。 MLMI内核随后被用于生成学习的客观决策函数,该函数学习用于确定特定镜头(不在该组训练镜头中)是否包含目标概念的实例的分类器。 正则化框架也可以与MLMI内核一起使用,以生成修改后的学习目标决策函数。 正则化框架引入明确的约束,用于最大化分类器的精度。
    • 2. 发明申请
    • QR CODE DETECTION
    • QR码检测
    • US20110290882A1
    • 2011-12-01
    • US12790125
    • 2010-05-28
    • Zhiwei GuMatthew R. ScottGang ChenJonathan Y. Tien
    • Zhiwei GuMatthew R. ScottGang ChenJonathan Y. Tien
    • G06K7/10
    • G06K7/1456
    • One or more techniques and/or systems are disclosed for detecting a quick response (QR) code. An area of an image comprising a QR code is localized by combining pixel dynamic scale (DS), black-cell ratio (BR), and edge intensity sum (EIS) criteria determination to identify the QR code. A pattern for the QR code is detected, comprising determining if a position detection pattern (PDP) is located in respective grid areas of a first grid that comprises the QR code, and identifying an alignment pattern (AP), if present. To identify the AP, an AP region is estimated using the PDPs, and a center area of the AP is found by examining respective areas of a second grid comprising the estimated AP region.
    • 公开了用于检测快速响应(QR)代码的一个或多个技术和/或系统。 包括QR码的图像的区域通过组合像素动态尺度(DS),黑色单元比(BR)和边缘强度和(EIS)标准确定来识别QR码来定位。 检测QR码的图案,包括确定位置检测图案(PDP)是否位于包括QR码的第一格栅的相应网格区域中,以及如果存在则识别对准图案(AP)。 为了识别AP,使用PDP估计AP区域,并且通过检查包括估计的AP区域的第二网格的相应区域来找到AP的中心区域。
    • 5. 发明申请
    • VIDEO CONCEPT DETECTION USING MULTI-LAYER MULTI-INSTANCE LEARNING
    • 使用多层次多实例学习的视频概念检测
    • US20090274434A1
    • 2009-11-05
    • US12111202
    • 2008-04-29
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • G11B27/00
    • G11B27/28G06K9/00711G06K9/6282
    • Visual concepts contained within a video clip are classified based upon a set of target concepts. The clip is segmented into shots and a multi-layer multi-instance (MLMI) structured metadata representation of each shot is constructed. A set of pre-generated trained models of the target concepts is validated using a set of training shots. An MLMI kernel is recursively generated which models the MLMI structured metadata representation of each shot by comparing prescribed pairs of shots. The MLMI kernel is subsequently utilized to generate a learned objective decision function which learns a classifier for determining if a particular shot (that is not in the set of training shots) contains instances of the target concepts. A regularization framework can also be utilized in conjunction with the MLMI kernel to generate modified learned objective decision functions. The regularization framework introduces explicit constraints which serve to maximize the precision of the classifier.
    • 视频剪辑中包含的视觉概念基于一组目标概念进行分类。 剪辑被分割成镜头,并且构建每个镜头的多层多实例(MLMI)结构化元数据表示。 使用一组训练镜头验证了一组预先生成的目标概念训练模型。 通过比较规定的拍摄对,递归地生成MLMI内核,以对每个镜头的MLMI结构化元数据表示进行建模。 MLMI内核随后被用于生成学习的客观决策函数,该函数学习用于确定特定镜头(不在该组训练镜头中)是否包含目标概念的实例的分类器。 正则化框架也可以与MLMI内核一起使用,以生成修改后的学习目标决策函数。 正则化框架引入明确的约束,用于最大化分类器的精度。