会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Remaining life prediction for individual components from sparse data
    • 从稀疏数据中对各个组件进行剩余寿命预测
    • US08768657B2
    • 2014-07-01
    • US11653067
    • 2007-01-12
    • Neil J. GoldfineVladimir A. ZilbersteinVolker WeissYanko K. Sheiretov
    • Neil J. GoldfineVladimir A. ZilbersteinVolker WeissYanko K. Sheiretov
    • G06F7/60G06F17/10G06F19/00G21C17/00G06F15/18G06E1/00G06E3/00G06G7/00G01N27/82G06N7/00G01B7/34
    • G01N27/82F05B2270/109F05B2270/404G01B7/34G06N7/005
    • Predicting the remaining life of individual aircraft, fleets of aircraft, aircraft components and subpopulations of these components. This is accomplished through the use of precomputed databases of response that are generated from a model for the nonlinear system behavior prior to the time that decisions need to be made concerning the disposition of the system. The database is calibrated with a few data points, to account for unmodeled system variables, and then used with an input variable to predict future system behavior. These methods also permit identification of the root causes for observed system behavior. The use of the response databases also permits rapid estimations of uncertainty estimates for the system behavior, such as remaining life estimates, particularly, when subsets of an input variable distribution are passed through the database and scaled appropriately to construct the output distribution. A specific example is the prediction of remaining life for an aircraft component where the model calculates damage evolution, input variables are a crack size and the number of cycles, and the predicted parameters are the actual stress on the component and the remaining life.
    • 预测个别飞机,飞机机队,飞机部件和这些部件的子群体的剩余寿命。 这是通过使用预先计算的响应数据库来实现的,该数据库是在关于系统的配置的决定之前从非线性系统行为的模型生成的。 数据库使用几个数据点进行校准,以解释未建模的系统变量,然后与输入变量一起使用以预测未来的系统行为。 这些方法还允许识别观察到的系统行为的根本原因。 响应数据库的使用还允许对系统行为的不确定性估计的快速估计,例如剩余寿命估计,特别是当输入变量分布的子集通过数据库并适当地缩放以构建输出分布时。 一个具体的例子是对模型计算损伤演化的飞机部件的剩余寿命的预测,输入变量是裂纹尺寸和循环次数,预测参数是组件上的实际应力和剩余寿命。
    • 8. 发明授权
    • Fastener and fitting based sensing methods
    • 基于紧固件和拟合的感应方法
    • US07528598B2
    • 2009-05-05
    • US11473297
    • 2006-06-22
    • Neil J. GoldfineDavid C. GrundyAndrew P. WashabaughYanko K. SheiretovDarrell E. Schlicker
    • Neil J. GoldfineDavid C. GrundyAndrew P. WashabaughYanko K. SheiretovDarrell E. Schlicker
    • G01R33/12G01R27/26
    • G01N27/82
    • Damage and usage conditions in the vicinity of fasteners in joined structures are nondestructively evaluated using the fasteners themselves. Sensors or sensor conductors are embedded in the fasteners or integrated within the fastener construct, either in the clearance gap between the fastener and the structure material or as an insert inside the shaft or pin of the fastener. The response of the material to an interrogating magnetic or electric field is then measured with drive and sense electrodes both incorporated into the fastener or with either drive or sense electrodes external to the fastener on the material surface. In another configuration, an electric current is applied to one or more fasteners and the electric potential is measured at locations typically between the driven electrodes applying the current. The potential is measured circumferentially around the fastener at locations on the material surface or across pairs of fasteners throughout or along the joint. The voltage or potential measurement electrodes may be collinear with the drive electrodes. State sensitive material layers can be added either to the fastener or the test material layers in order to enhance observability of the test material condition, such as the presence of a crack, mechanical stress, delamination, or disbond.
    • 使用紧固件本身对接合结构中紧固件附近的损坏和使用条件进行非破坏性评估。 传感器或传感器导体嵌入到紧固件中或整合在紧固件结构内,无论是在紧固件和结构材料之间的间隙中,或者作为紧固件的轴或销内的插入件。 然后测量材料对询问磁场或电场的响应,其中驱动和感测电极两者并入到紧固件中,或者与材料表面上的紧固件外部的驱动或感测电极结合。 在另一种配置中,电流被施加到一个或多个紧固件,并且在通常在施加电流的驱动电极之间的位置处测量电位。 在整个或沿着接头的材料表面上或穿过成对的紧固件的位置周围围绕紧固件测量电位。 电压或电位测量电极可与驱动电极共线。 可以将状态敏感材料层添加到紧固件或测试材料层中,以便增强测试材料状况的可观察性,例如存在裂纹,机械应力,分层或脱粘。
    • 9. 发明授权
    • Component adaptive life management
    • 组件适应性生活管理
    • US08494810B2
    • 2013-07-23
    • US12795538
    • 2010-06-07
    • Neil J. GoldfineYanko K. SheiretovAndrew P. WashabaughVladimir A. ZilbersteinDavid C. GrundyRobert J. LyonsDavid A. JablonskiFloyd W. Spencer
    • Neil J. GoldfineYanko K. SheiretovAndrew P. WashabaughVladimir A. ZilbersteinDavid C. GrundyRobert J. LyonsDavid A. JablonskiFloyd W. Spencer
    • G06F19/00
    • G07C3/00G01N2203/0212
    • A framework for adaptively managing the life of components. A sensor provides non-destructive test data obtained from inspecting a component. The inspection data may be filtered using reference signatures and by subtracting a baseline. The filtered inspection data and other inspection data for the component is analyzed to locate flaws and estimate the current condition of the component. The current condition may then be used to predict the component's condition at a future time or to predict a future time at which the component's condition will have deteriorated to a certain level. A current condition may be input to a precomputed database to look up the future condition or time. The future condition or time is described by a probability distribution which may be used to assess the risk of component failure. The assessed risk may be used to determine whether the part should continue in service, be replaced or repaired. A hyperlattice database is used with a rapid searching method to estimate at least one material condition and one usage parameter, such as stress level for the component. The hyperlattice is also used to rapidly predict future condition, associated uncertainty and risk of failure.
    • 自适应地管理组件的寿命的框架。 传感器提供从检查组件获得的非破坏性测试数据。 可以使用参考签名和减去基线来过滤检查数据。 分析滤波后的检查数据和其他部件检查数据,以定位缺陷并估计组件的当前状态。 然后可以使用当前条件来预测未来时间的组件状况,或者预测组件的状况将恶化到一定水平的未来时间。 当前条件可以被输入到预先计算的数据库以查找未来的状况或时间。 将来的状况或时间由概率分布描述,可用于评估组件故障的风险。 评估的风险可用于确定部件是否应该继续使用,更换或修理。 使用超晶格数据库与快速搜索方法来估计至少一种材料状况和一种使用参数,例如组件的应力水平。 超晶格也用于快速预测未来状况,相关不确定性和故障风险。