会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for calibrating a MEMS device
    • 用于校准MEMS器件的方法
    • US06823101B2
    • 2004-11-23
    • US10046352
    • 2002-01-14
    • John V. Gates, IIWilliam R. HollandJungsang KimStanley Pau
    • John V. Gates, IIWilliam R. HollandJungsang KimStanley Pau
    • G02B635
    • G02B6/3586G02B6/3512G02B6/3556G02B6/357
    • A method of calibrating a crossconnect including a MEMS device and another optical device, each of which further include a plurality of elements, the method including determining a relationship between an applied voltage and an angle response for a number of the elements of the MEMS device, determining a function of beam position and element position for the number of the elements of the MEMS device, assembling the MEMS device and the another optical device to produce the crossconnect, applying voltages to make sample connections between the MEMS device and the another optical device based on the relationship and the function, determining a transformation for the sample connections caused by packaging the crossconnect, and redetermining the relationship and the function based on the transformation. The method may be iterated more than once to achieve a more accurate determination.
    • 一种校准包括MEMS器件和另一光学器件的交叉连接的方法,每个还包括多个元件,所述方法包括确定所述MEMS器件的多个元件的施加电压和角度响应之间的关系, 确定MEMS器件的元件数量的光束位置和元件位置的功能,组装MEMS器件和另一光学器件以产生交叉连接,施加电压以在MEMS器件和另一光学器件之间进行采样连接 关系和功能,确定由包装交叉连接引起的样本连接的转换,并根据转换重新确定关系和功能。 可以多次迭代该方法以实现更准确的确定。
    • 2. 发明授权
    • Optical time-domain reflectometer (OTDR)
    • 光时域反射计(OTDR)
    • US06519026B1
    • 2003-02-11
    • US09369915
    • 1999-08-06
    • William R. Holland
    • William R. Holland
    • G01N2100
    • G01M11/3109
    • The present invention is directed to an optical time-domain reflectometer which employs a so-called “out-of-band” offsetting to cancel the effects of Raman non-linearities which extract energy from the traffic signal wavelengths and amplify the test signal back-scattering. Losses and faults in the optical fibers are monitored by measuring the back-scattered portion of the light launched into the fiber, with the test signal back-scattering judiciously offset to account for the Raman non-linearities. That is, the effects of the Raman non-linearities are taken as a baseline measurement and, then accordingly used as a basis to offset the test signal back-scattering.
    • 本发明涉及一种光时域反射计,其采用所谓的“带外”偏移来消除从交通信号波长中提取能量的拉曼非线性的影响,并放大测试信号反向信号, 散射。 通过测量发射到光纤中的光的反向散射部分来监测光纤中的损耗和故障,测试信号反向散射明确地抵消了拉曼非线性。 也就是说,将拉曼非线性的影响作为基线测量,并且因此用作抵消测试信号反向散射的基础。
    • 3. 发明授权
    • In situ polarization mode dispersion measurement
    • 原位偏振模色散测量
    • US06504604B1
    • 2003-01-07
    • US09438855
    • 1999-11-12
    • William R. Holland
    • William R. Holland
    • G01N2100
    • G01M11/3181
    • The present invention employs polarizers and delay elements to effect the real-time measurement of optical parameters required to compute the polarization mode dispersion (PMD) in an optical fiber. The measurement is performed in situ and based on the remote sensing of the intensity levels of optical pulses transmitted through two polarizers deployed along the fiber for different known states of polarization at each of two wavelengths. In as much as information about the output states of polarization of the optical pulses contained in these latter intensity transmission measurements are made substantially coincident with the location of the polarizers, the return propagation of the optical pulses does not affect the measured polarization characteristics of the fiber.
    • 本发明使用偏振器和延迟元件来实现计算光纤中的偏振模色散(PMD)所需的光学参数的实时测量。 测量是在现场执行的,并且基于通过沿着光纤布置的两个偏振器的光脉冲的强度水平的遥感来实现,以在两个波长的每一个处的不同的已知的偏振状态。 在与后面的强度传输测量中包含的光脉冲的偏振的输出状态的信息基本上与偏振器的位置一致的情况下,光脉冲的返回传播不影响测量的光纤的偏振特性 。
    • 4. 发明申请
    • NA Reduction In Fiber Optical Couplers
    • 光纤耦合器中的NA减少
    • US20130322819A1
    • 2013-12-05
    • US13823473
    • 2011-09-21
    • William R. HollandWilliam J. Strachan
    • William R. HollandWilliam J. Strachan
    • G02B6/26
    • G02B6/262G02B6/24G02B6/2835
    • A fiber optical coupler comprises a bundle of optical fibers configured to couple light from a multiplicity of input light sources to an output port, each of the fibers comprising a multimode fiber having a core region and a cladding region surrounding the core region. The bundle has first and second axial sections arranged in tandem and adiabatically coupled to one another via a transition zone that includes an optical interface. Within the first section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R1, and within the second section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R2>R1, where R2 is substantially constant along the axial length of the second section. In one embodiment, the second section is tapered from a larger diameter at the optical interface to a smaller diameter at the output port. Methods of making such optical couplers are also described.
    • 光纤耦合器包括一束光纤,其被配置为将来自多个输入光源的光耦合到输出端口,每个光纤包括具有芯区域和围绕芯区域的包层区域的多模光纤。 束具有串联布置并且经由包括光学界面的过渡区彼此绝热地彼此排列的第一和第二轴向部分。 在第一部分中,纤维中的至少一些纤维中的每一个的横截面纤芯面积与每个纤维的总横截面面积的比率由R1给出,并且在第二部分内, 至少一些纤维中的每一个的横截面核心面积与这些纤维中的每一个的总横截面积由R2> R1给出,其中R2沿着第二部分的轴向长度基本恒定。 在一个实施例中,第二部分从光学界面处的较大直径到输出端口处的较小直径逐渐变细。 还描述了制造这种光耦合器的方法。
    • 9. 发明授权
    • Test and measurement system for detecting and monitoring faults and losses in passive optical networks (PONs)
    • 无源光网络(PON)的故障和损耗检测和监测测试与测量系统
    • US06396575B1
    • 2002-05-28
    • US09584588
    • 2000-05-31
    • William R. Holland
    • William R. Holland
    • G01N2100
    • G01M11/3181
    • The present invention employs “polarization markers” deployed immediately after the branching portion of a passive optical network (PON) for measuring and monitoring transmission losses and faults. Each polarization marker is configured to produce a unique polarization dependent loss (PDL) within the corresponding branch of the PON. Since each polarization marker uniquely attenuates optical test pulse(s) launched into the PON, the back-scattering uniquely varies with the launched state of polarization. Losses within each branch of the PON are then monitored by measuring the back-scattered portion of the launched optical pulse(s) as a function of time for different known states of polarization, wherein the unique PDL associated with each polarization marker is used as the basis for distinguishing the branches from one another.
    • 本发明采用在无源光网络(PON)的分支部分之后立即进行测量和监测传输损耗和故障的“偏振标记”。 每个偏振标记被配置为在PON的相应分支内产生唯一的偏振相关损耗(PDL)。 由于每个极化标记唯一地衰减发射到PON中的光学测试脉冲,所以背散射随发射的极化状态而独特地变化。 然后通过测量所发射的光脉冲的反向散射部分作为不同已知的偏振状态的时间的函数来监测PON的每个分支内的损耗,其中与每个偏振标记相关联的唯一PDL被用作 将分支彼此区分开来的基础。
    • 10. 发明授权
    • Optical fiber encapsulating techniques
    • 光纤封装技术
    • US5292390A
    • 1994-03-08
    • US954720
    • 1992-09-30
    • John J. BurackWilliam R. Holland
    • John J. BurackWilliam R. Holland
    • G02B6/44B29C43/18B29C70/70B29D11/00G02B6/00G02B6/36G02B6/43H01B7/00B29C65/18
    • G02B6/3628B29C43/18B29C70/70B29D11/00663G02B6/43B29C2791/001B29L2011/0075Y10T156/109
    • A plurality of optical fibers (13) are first bonded to an upper surface of a flat flexible plastic substrate (12). The optical fibers are covered with a layer (20) of thermoplastic material to form a composite structure comprising the thermoplastic material, the optical fibers and the plastic substrate. The composite structure is then compressed at a first elevated temperature and at a first relatively high pressure which are sufficient to bond or tack the thermoplastic material to the plastic substrate. The temperature of a composite structure is then cool while maintaining the first relatively high pressure. Thereafter, a second elevated temperature is applied to the thermoplastic material while compressing the composite structure at a second pressure. The second elevated temperature is higher than the first temperature and is sufficiently high to cause the thermoplastic material to flow about and encase the optical fibers, while the second pressure is smaller than the first pressure and is sufficiently small to avoid damaging said optical fibers. The various compression steps are applied by upper (17) and lower (16) platens of a press machine which are appropriately heated to apply the temperatures described above.
    • 首先将多根光纤(13)接合到扁平柔性塑料基板(12)的上表面。 光纤被热塑性材料层(20)覆盖以形成包括热塑性材料,光纤和塑料基底的复合结构。 然后将复合结构在第一高温和第一相对较高的压力下压缩,该第一高温足以将热塑性材料粘合或粘合到塑料基材上。 然后将复合结构的温度保持在第一相对高的压力下。 此后,在第二压力下压缩复合结构体时,将第二高温施加到热塑性材料上。 第二升高温度高于第一温度,并且足够高以使热塑性材料流动并包围光纤,而第二压力小于第一压力,并且足够小以避免损坏所述光纤。 通过适当加热的压力机的上部(17)和下部(16)压板施加各种压缩步骤以施加上述温度。