会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Shallow junction semiconductor and method for the fabrication thereof
    • 浅结半导体及其制造方法
    • US07033916B1
    • 2006-04-25
    • US10770990
    • 2004-02-02
    • Mario M. PelellaWilliam George EnEric PatonWitold P. Maszara
    • Mario M. PelellaWilliam George EnEric PatonWitold P. Maszara
    • H01L21/22H01L21/336H01L21/8234H01L21/44
    • H01L29/665H01L21/26506H01L21/28518H01L21/823814H01L29/6656H01L29/6659
    • A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. A super-saturated doped source silicide metallic layer is formed on the semiconductor substrate adjacent the gate and the gate dielectric. The silicide metallic layer incorporates a substantially uniformly distributed dopant therein in a substantially uniform super-saturated concentration. The silicide metallic layer is reacted with the semiconductor substrate therebeneath to form a salicide layer and outdiffuse the dopant from the salicide layer into the semiconductor substrate therebeneath. The outdiffused dopant in the semiconductor substrate is then activated to form a shallow source/drain junction beneath the salicide layer. An interlayer dielectric is then deposited above the semiconductor substrate, and contacts are formed in the interlayer dielectric to the salicide layer.
    • 提供一种形成具有半导体衬底的集成电路的方法。 在半导体衬底上形成栅极电介质,在栅极电介质上形成栅极。 在与栅极和栅极电介质相邻的半导体衬底上形成超饱和掺杂源极化硅金属层。 硅化金属层以基本均匀的超饱和浓度掺入其中基本上均匀分布的掺杂剂。 硅化物金属层与其下面的半导体衬底反应以形成自对准硅化物层,并将掺杂剂从硅化物层扩散到其内的半导体衬底中。 然后激活半导体衬底中的向外扩散的掺杂​​剂以在自对准硅化物层下面形成浅的源极/漏极结。 然后在半导体衬底上沉积层间电介质,并且在层间电介质中形成接触到硅化物层。
    • 9. 发明授权
    • Process induced charging damage control device
    • 过程感应充电损坏控制装置
    • US5963412A
    • 1999-10-05
    • US969580
    • 1997-11-13
    • William George En
    • William George En
    • H01L27/02H02H3/22
    • H01L27/0248
    • A plasma charging damage protection structure (40, 104) includes a first conduction path (90) for conducting positive plasma charging away from a device needing protection (44) and a second conduction path (94) for conducting negative plasma charging away from the device needing protection (44). In addition, a method (200) of preventing plasma induced charging damage includes the forming of plasma charging during semiconductor processing (202). The method also includes conducting the plasma charging through a first conduction path if the plasma charging is positive (210) and conducting the plasma charging through a second conduction path if the plasma charging is negative (214).
    • 等离子体充电损伤保护结构(40,104)包括用于从需要保护的装置(44)和第二导电路径(94)进行正等离子体充电的第一导电路径(90),用于将远离装置的负等离子体充电 需要保护(44)。 此外,防止等离子体诱导的充电损坏的方法(200)包括在半导体处理期间形成等离子体充电(202)。 如果等离子体充电是正的(210)并且如果等离子体充电是负的,则通过第二导电路径进行等离子体充电(214),该方法还包括通过第一导电路径进行等离子体充电。
    • 10. 发明授权
    • Method of making a test structure for gate-body current and direct extraction of physical gate length using conventional CMOS
    • 使用常规CMOS制作门体电流测试结构并直接提取物理栅极长度的方法
    • US07071044B1
    • 2006-07-04
    • US10838229
    • 2004-05-05
    • Srinath KrishnanWilliam George En
    • Srinath KrishnanWilliam George En
    • H01L21/336
    • H01L21/84H01L22/34H01L29/105H01L29/78621
    • A structure for testing relative to an MOS transistor, can be easily constructed as part of the CMOS process flow. A doped device well is formed, for example, in a silicon-on-insulator structure. The concentration level in the well corresponds to that for a well of the transistor. Gate insulator and polysilicon layers are formed, and the polysilicon is implanted with dopant, to a concentration level expected in the transistor gate. After gate patterning, the methodology involves forming sidewall spacers and implanting dopant into the active device well, to form regions in the test structure corresponding to the transistor source and drain. Although the concentrations mimic those in the transistor source and drain, these test structure regions are doped with opposite type dopant material. The test structure enables accurate measurement of the gate-body current, for modeling floating body effects and/or for measurement of gate length.
    • 用于相对于MOS晶体管测试的结构可以容易地构建为CMOS工艺流程的一部分。 掺杂器件阱例如在绝缘体上硅结构中形成。 阱中的浓度水平对应于晶体管的阱。 形成栅极绝缘体和多晶硅层,并且将掺杂剂注入多晶硅至晶体管栅极中预期的浓度水平。 在栅极图案化之后,该方法涉及形成侧壁间隔物并将掺杂剂注入到有源器件阱中,以在对应于晶体管源极和漏极的测试结构中形成区域。 尽管浓度模拟晶体管源极和漏极中的浓度,但是这些测试结构区域掺杂有相反类型的掺杂剂材料。 测试结构能够准确测量门体电流,用于建模浮体效应和/或测量栅极长度。