会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Process for solid oxide fuel cell manufacture
    • 固体氧化物燃料电池制造工艺
    • US20050089739A1
    • 2005-04-28
    • US10939116
    • 2004-09-10
    • Donald SeccombeGary OrbeckSrikanth GopalanUday Pal
    • Donald SeccombeGary OrbeckSrikanth GopalanUday Pal
    • C04B35/64H01M20060101H01M4/86H01M4/88H01M4/90H01M8/12
    • H01M4/9033H01M4/8621H01M4/8657H01M4/8885H01M4/9016H01M4/9066H01M8/1213H01M8/1246H01M2300/0074H01M2300/0077H01M2300/0094Y02E60/525Y02P70/56
    • The present invention provides a method for conveniently manufacturing a solid oxide fuel cell (SOFC) at a cost that is less than five-hundred dollars per kilowatt of electricity. The method comprises forming an electrode layer and depositing an electrolyte material on the surface of the electrode. The formed structure is an electrode-electrolyte bi-layer. A second electrode is deposited onto this bi-layer to form a multilayer fuel cell structure comprising an electrolyte positioned between two electrodes. This multilayer structure is then heated and fired in a single thermal cycle to remove any binder materials and sinter, respectively, the fuel cell. This thermal cycle can be performed in a furnace having one or more chambers. The chamber(s) preferably contains a variable or multiple frequency microwave source for heating the cell and removing binder materials in the electrolyte and electrode structures. The chamber(s) also preferably include a convection and/or radiation source for sintering the fuel cell. In addition, the method of the invention harmonizes and minimizes the deviation among the thermophysical properties of the electrolyte and electrode structures. This harmonization reduces and minimizes the temperature gradient within the cell such that the structure can be uniformly heated and fired during the thermal cycle. The multilayer structure is also unlikely to distort and fracture by minimizing the temperature gradient in the cell. An SOFC can also be manufactured by the present method in an order of magnitude less time than standard processes.
    • 本发明提供一种方便地制造固体氧化物燃料电池(SOFC)的方法,其成本低于每千瓦电力500美元。 该方法包括形成电极层并在电极的表面上沉积电解质材料。 所形成的结构是电极 - 电解质双层。 第二电极沉积到该双层上以形成包含位于两个电极之间的电解质的多层燃料电池结构。 然后将该多层结构在单个热循环中加热和烧制以除去任何粘合剂材料并分别烧结燃料电池。 该热循环可以在具有一个或多个室的炉中进行。 腔室优选地包含用于加热电池并去除电解质和电极结构中的粘合剂材料的可变或多频微波源。 该室还优选地包括用于烧结燃料电池的对流和/或辐射源。 此外,本发明的方法协调和最小化电解质和电极结构的热物理性质之间的偏差。 这种协调减小并最小化了电池内的温度梯度,使得结构可以在热循环期间被均匀地加热和烧制。 多层结构也不太可能通过使电池中的温度梯度最小化来扭曲和断裂。 SOFC也可以通过本方法制造的时间比标准工艺要低一个数量级。
    • 2. 发明授权
    • Apparatus for metal extraction
    • 金属提取设备
    • US06299742B1
    • 2001-10-09
    • US09368308
    • 1999-08-03
    • Uday PalStephen C. Britten
    • Uday PalStephen C. Britten
    • B01D5940
    • C25C3/00C25C7/06G01N27/40G01N27/42
    • An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10−5 cm2/sec; a cathode and an anode, the cathode in electrical contact with the molten metal electrolyte, the cathode and molten electrolyte separated from the anode by an ionic membrane capable of transporting the anionic species of the electrolyte into the membrane; and a power source for generating a potential between the cathode and the anode.
    • 描述了用于测量炉渣中容易解离的氧化物的浓度和运输特性的电流原位装置和技术。 该技术包括利用电解质将参考气体隔室与感兴趣的炉渣分开的不同测量的组合。 还描述了用于金属提取的方法和装置,其包括用于保持熔融电解质的容器,所述电解质包含可移动金属物质和扩散系数大于约10-5cm 2 / sec的阴离子物质; 阴极和阳极,所述阴极与所述熔融金属电解质电接触,所述阴极和熔融电解质通过能够将所述电解质的阴离子物质输送到所述膜中的离子膜与所述阳极分离; 以及用于在阴极和阳极之间产生电位的电源。
    • 5. 发明申请
    • Materials system for intermediate-temperature SOFC based on doped lanthanum-gallate electrolyte
    • 基于掺杂镧镓酸盐电解质的中温SOFC材料体系
    • US20070009784A1
    • 2007-01-11
    • US11476420
    • 2006-06-28
    • Uday PalSrikanth GopalanWenquan Gong
    • Uday PalSrikanth GopalanWenquan Gong
    • H01M4/86H01M8/12
    • H01M8/1213H01M4/8621H01M4/9033H01M4/905H01M4/9066
    • The invention provides for a stable materials system for intermediate temperature solid oxide fuel cells (SOFC). Without limitation, a solid electrolyte layer can include a Sr-and-Mg doped lanthanum gallate layer, such as La0.9Sr0.1Ga0.8Mg0.2O3, (LSGM), or a bi-layer semiconductor electrolyte (comprising, for example, donor doped SrTiO3 in an n-type first semiconductor layer and LSCF or LSM in a p-type second semiconductor layer); cathode materials can include La1-xSrxMnO3 (LSM), La1-xSrxCoyFe1-yO3 (LSCF), a two-phase particulate composite consisting of LSM and LSGM (LSM-LSGM), and LSCF-LSGM composite; anode materials can include Ni—Ce0.85Gd0.15O2 (Ni-GDC) and Ni—Ce0.6La0.4O2 (Ni-LDC) composites; and a barrier layer of GDC or LDC can be used between the electrolyte and Ni-composite anode to prevent adverse reaction of the Ni in the anode layer with lanthanum in the electrolyte layer.
    • 本发明提供了用于中温固体氧化物燃料电池(SOFC)的稳定材料体系。 不限于此,固体电解质层可以包括Sr和Mg掺杂的没食子酸镓镧层,例如La 0.9>> Ga Ga Ga> 0.8 0.8>>>> Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg (LSGM)或双层半导体电解质(包括例如n型第一半导体层中的施主掺杂SrTiO 3和LSCF或LSM 在p型第二半导体层中); 阴极材料可以包括La 1-x Sr 3 MnO 3(LSM),La 1-x Sr 由LSM和LSM组成的两相颗粒复合材料(LSCF),其中, LSGM(LSM-LSGM)和LSCF-LSGM复合; 阳极材料可以包括Ni-Ce 0.85 Ni(Ni-GDC)和Ni-Ce 0.6 N LaNiO 2(Ni-LDC)复合材料; 并且可以在电解质和Ni复合阳极之间使用GDC或LDC的阻挡层,以防止阳极层中的Ni与电解质层中的镧的不利反应。
    • 6. 发明授权
    • Method and apparatus for metal extraction and sensor device related
thereto
    • 用于金属提取的方法和装置以及与其相关的传感器装置
    • US5976345A
    • 1999-11-02
    • US002581
    • 1998-01-05
    • Uday PalStephen C. Britten
    • Uday PalStephen C. Britten
    • G01N27/28C25C3/00C25C7/06G01N27/40G01N27/416G01N27/42G01N27/48
    • C25C3/00C25C7/06G01N27/40G01N27/42
    • An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A potentiometric measurement (type I) provides information on the thermodynamic properties of the slag; an amperometric measurement (type II) yields information concerning the type and transport properties of dissociable oxides; an electrolysis measurement (type III) determines the concentration of dissociable oxides. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10.sup.-5 cm.sup.2 /sec; a cathode and an anode, the cathode in electrical contact with the molten metal electrolyte, the cathode and molten electrolyte separated from the anode by an ionic membrane capable of transporting the anionic species of the electrolyte into the membrane; and a power source for generating a potential between the cathode and the anode.
    • 描述了用于测量炉渣中容易解离的氧化物的浓度和运输特性的电流原位装置和技术。 该技术包括利用电解质将参考气体隔室与感兴趣的炉渣分开的不同测量的组合。 电位测量(I型)提供了关于炉渣热力学性质的信息; 电流测量(II型)产生关于可分解氧化物的类型和运输特性的信息; 电解测量(III型)决定了可离解氧化物的浓度。 还描述了用于金属提取的方法和装置,其包括用于保持熔融电解质的容器,所述电解质包含可移动金属物质和扩散系数大于约10-5cm 2 / sec的阴离子物质; 阴极和阳极,所述阴极与所述熔融金属电解质电接触,所述阴极和熔融电解质通过能够将所述电解质的阴离子物质输送到所述膜中的离子膜与所述阳极分离; 以及用于在阴极和阳极之间产生电位的电源。
    • 7. 发明授权
    • Process for solid oxide fuel cell manufacture
    • 固体氧化物燃料电池制造工艺
    • US07485385B2
    • 2009-02-03
    • US10939116
    • 2004-09-10
    • Donald A. Seccombe, Jr.Gary OrbeckSrikanth GopalanUday Pal
    • Donald A. Seccombe, Jr.Gary OrbeckSrikanth GopalanUday Pal
    • H01M8/10
    • H01M4/9033H01M4/8621H01M4/8657H01M4/8885H01M4/9016H01M4/9066H01M8/1213H01M8/1246H01M2300/0074H01M2300/0077H01M2300/0094Y02E60/525Y02P70/56
    • The present invention provides a method for conveniently manufacturing a solid oxide fuel cell (SOFC) at a cost that is less than five-hundred dollars per kilowatt of electricity. The method comprises forming an electrode layer and depositing an electrolyte material on the surface of the electrode. The formed structure is an electrode-electrolyte bi-layer. A second electrode is deposited onto this bi-layer to form a multilayer fuel cell structure comprising an electrolyte positioned between two electrodes. This multilayer structure is then heated and fired in a single thermal cycle to remove any binder materials and sinter, respectively, the fuel cell. This thermal cycle can be performed in a furnace having one or more chambers. The chamber(s) preferably contains a variable or multiple frequency microwave source for heating the cell and removing binder materials in the electrolyte and electrode structures. The chamber(s) also preferably include a convection and/or radiation source for sintering the fuel cell. In addition, the method of the invention harmonizes and minimizes the deviation among the thermophysical properties of the electrolyte and electrode structures. This harmonization reduces and minimizes the temperature gradient within the cell such that the structure can be uniformly heated and fired during the thermal cycle. The multilayer structure is also unlikely to distort and fracture by minimizing the temperature gradient in the cell. An SOFC can also be manufactured by the present method in an order of magnitude less time than standard processes.
    • 本发明提供一种方便地制造固体氧化物燃料电池(SOFC)的方法,其成本低于每千瓦电力500美元。 该方法包括形成电极层并在电极的表面上沉积电解质材料。 所形成的结构是电极 - 电解质双层。 第二电极沉积到该双层上以形成包含位于两个电极之间的电解质的多层燃料电池结构。 然后将该多层结构在单个热循环中加热和烧制以除去任何粘合剂材料并分别烧结燃料电池。 该热循环可以在具有一个或多个室的炉中进行。 腔室优选地包含用于加热电池并去除电解质和电极结构中的粘合剂材料的可变或多频微波源。 该室还优选地包括用于烧结燃料电池的对流和/或辐射源。 此外,本发明的方法协调和最小化电解质和电极结构的热物理性质之间的偏差。 这种协调减小并最小化了电池内的温度梯度,使得结构可以在热循环期间被均匀地加热和烧制。 多层结构也不太可能通过使电池中的温度梯度最小化来扭曲和断裂。 SOFC也可以通过本方法制造的时间比标准工艺要低一个数量级。
    • 8. 发明授权
    • Process for sealing high-temperature fuel cells
    • 密封高温燃料电池的工艺
    • US5532071A
    • 1996-07-02
    • US426561
    • 1995-04-19
    • Uday PalHarald LandesHorst Greiner
    • Uday PalHarald LandesHorst Greiner
    • C23C16/04H01M8/02H01M8/12H01M8/24H01M8/04
    • C23C16/045H01M8/0271H01M8/2425Y02P70/56Y02T50/67
    • A process for sealing leaks gas spaces and/or gas channels between individual components of high-temperature fuel cells, includes introducing at least first and second and optionally further different gases at high temperature from the outside into the gas spaces and/or gas channels to be sealed off from one another, for flushing every leak with the first gas on one side and with the second or further gas on the other side. The first gas contains at least one gaseous compound that can be oxidized to form a metal ion-conducting and/or an oxygen ion-conducting oxide, and the second and optionally further gas contains oxygen and/or is able to give off oxygen. The first gas contains at least one oxidizable compound of at least one of the metals of an electrolyte material, a bipolar plate and electrodes of the fuel cells, and/or one element of the group including zirconium, nickel, calcium, magnesium, cerium and rare earth metal. A high-temperature fuel cell produced by the process includes individual components having previously leaking points therebetween. Inlays of metal ion-conducting and/or oxygen ion-conducting oxides are disposed in the vicinity of the previously leaking points. The inlays are formed of oxides of at least one of the metals of electrolyte material, a bipolar plate, electrodes, zirconium, nickel, calcium, magnesium, cerium, hafnium and rare earth metal.
    • 一种用于密封泄漏高温燃料电池的各个部件之间的气体空间和/或气体通道的方法包括将高温下的至少第一和第二和任选的另外不同的气体从外部引入到气体空间和/或气体通道中, 彼此密封,用于冲洗一侧的第一气体和另一侧的第二气体或其他气体的每一次泄漏。 第一气体含有至少一种可被氧化以形成金属离子导电和/或氧离子传导氧化物的气态化合物,第二气体和任选的另外的气体含有氧和/或能够释放出氧。 第一气体含有至少一种电解质材料,双极板和燃料电池的电极中的至少一种金属的可氧化化合物,和/或包括锆,镍,钙,镁,铈和 稀土金属。 通过该方法制造的高温燃料电池包括其间具有先前泄漏点的各个部件。 金属离子传导和/或氧离子传导氧化物的镶嵌物设置在先前泄漏点附近。 嵌体由电解质材料,双极板,电极,锆,镍,钙,镁,铈,铪和稀土金属中的至少一种金属的氧化物形成。