会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • MAGNETO-RESISTIVE EFFECT DEVICE OF THE CPP TYPE, AND MAGNETIC DISK SYSTEM
    • CPP类型和磁盘系统的磁阻效应器件
    • US20090190270A1
    • 2009-07-30
    • US12022538
    • 2008-01-30
    • Tsutomu ChouYoshihiro TsuchiyaDaisuke MiyauchiTakahiko MachitaShinji HaraTomohito MizunoHironobu MatsuzawaToshiyuki AyukawaKoji ShimazawaKiyoshi Noguchi
    • Tsutomu ChouYoshihiro TsuchiyaDaisuke MiyauchiTakahiko MachitaShinji HaraTomohito MizunoHironobu MatsuzawaToshiyuki AyukawaKoji ShimazawaKiyoshi Noguchi
    • G11B5/33
    • G11B5/398B82Y25/00G01R33/093G11B5/3916G11B5/3932G11B5/3967
    • The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, with a sense current applied in the stacking direction, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer near a medium opposite plane and a magnetization direction control area that extends further rearward (toward the depth side) from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer in such a way that the magnetizations of the said first and second ferromagnetic layers are antiparallel with each other along the width direction axis; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions. It is thus possible to obtain a magnetoresistive device that, while the magnetization directions of two magnetic layers (free layers) stay stabilized, can have high reliability, and can improve linear recording densities by the adoption of a structure capable of narrowing the read gap (the gap between the upper and lower shields) thereby meeting recent demands for ultra-high recording densities.
    • 本发明提供了一种具有CPP(电流垂直于平面)结构的磁阻器件,包括非磁性中间层,并且第一铁磁层和第二铁磁层层叠并形成有介于它们之间的所述非磁性中间层,施加感应电流 其特征在于,所述第一和第二铁磁体层中的每一个包括与介质相对平面附近的非磁性中间层连接的传感器区域和从所述第一和第二铁磁层的位置向后延伸(朝向深度侧)的磁化方向控制区域 所述非磁性中间层的后端; 磁化方向控制多层布置被插入在所述第一铁磁层的磁化方向控制区域与所述第二铁磁层的磁化方向控制区域相反的区域处,使得所述第一和第二铁磁层的磁化 沿着宽度方向轴线彼此反平行; 并且所述传感器区域设置在两个宽度方向端,偏压层工作,使得所述第一和第二铁磁层的相互反平行磁化在大致正交的方向相交。 因此,可以获得在两个磁性层(自由层)的磁化方向保持稳定的同时可以具有高可靠性的磁阻器件,并且可以通过采用能够缩小读取间隙的结构来提高线性记录密度( 上,下屏蔽之间的间隙),从而满足了对超高记录密度的最新要求。
    • 6. 发明申请
    • MAGNETIC FIELD DETECTING ELEMENT INCLUDING TRI-LAYER STACK WITH STEPPED PORTION
    • 磁场检测元件,包括带有步进部分的三层堆叠
    • US20090109580A1
    • 2009-04-30
    • US11925030
    • 2007-10-26
    • Toshiyuki AYUKAWADaisuke MIYAUCHIKoji SHIMAZAWATakahiko MACHITA
    • Toshiyuki AYUKAWADaisuke MIYAUCHIKoji SHIMAZAWATakahiko MACHITA
    • G11B5/33
    • G11B5/3932B82Y10/00B82Y25/00G11B2005/3996
    • A magnetic field detecting element comprises; a stack including an upper magnetic layer and a lower magnetic layer, and a non-magnetic intermediate layer sandwiched between said upper magnetic layer and said lower magnetic layer, wherein magnetization of said upper magnetic layer and said lower magnetic layer changes in accordance with an external magnetic field; an upper shield electrode layer and a lower shield electrode layer which is provided to sandwich said stack therebetween in a direction of the stacking of said stack, wherein said upper shield electrode layer and said lower shield electrode layer supply sense current in the direction of stacking, and magnetically shield said stack; a bias magnetic layer which is provided on a surface of said stack opposite to an air bearing surface, and wherein said bias magnetic layer applies a bias magnetic field to said upper magnetic layer and said lower magnetic layer in a direction perpendicular to the air bearing surface; and insulating layers which are provided on both sides of said stack in a track width direction thereof, wherein a stepped portion is formed so that a length of said upper magnetic layer in the track width direction is different from that of said lower magnetic layer.
    • 磁场检测元件包括: 包括上磁性层和下磁性层的堆叠以及夹在所述上磁性层和所述下磁性层之间的非磁性中间层,其中所述上磁性层和所述下磁性层的磁化根据外部磁性层而变化 磁场; 上屏蔽电极层和下屏蔽电极层,其设置成在堆叠的堆叠方向上夹着所述堆叠,其中所述上屏蔽电极层和所述下屏蔽电极层沿堆叠方向提供感测电流, 并且磁屏蔽所述堆叠; 偏置磁性层,其设置在与空气轴承表面相对的所述堆叠的表面上,并且其中所述偏磁层在与所述空气轴承表面垂直的方向上向所述上磁性层和所述下磁性层施加偏置磁场 ; 以及设置在所述堆叠的轨道宽度方向两侧的绝缘层,其中形成台阶部分,使得所述上磁性层在轨道宽度方向上的长度与所述下磁性层的长度不同。
    • 7. 发明授权
    • Magnetic field detecting element including tri-layer stack with stepped portion
    • 磁场检测元件包括具有阶梯部分的三层叠层
    • US08149546B2
    • 2012-04-03
    • US11925030
    • 2007-10-26
    • Toshiyuki AyukawaDaisuke MiyauchiKoji ShimazawaTakahiko Machita
    • Toshiyuki AyukawaDaisuke MiyauchiKoji ShimazawaTakahiko Machita
    • G11B5/39
    • G11B5/3932B82Y10/00B82Y25/00G11B2005/3996
    • A magnetic field detecting element comprises a stack including upper and lower magnetic layers, and a non-magnetic intermediate layer sandwiched therebetween, wherein magnetization of the magnetic layers changes in accordance with an external magnetic field; upper and lower shield electrode layers sandwiching the stack in a direction of stacking, wherein the upper and lower shield electrode layers supply sense current in the direction of stacking, and magnetically shield the stack; a bias magnetic layer provided on a surface of the stack opposite to an air bearing surface, and wherein the bias magnetic layer applies a bias magnetic field to the upper and lower magnetic layers in a direction perpendicular to the air bearing surface; and insulating layers provided on both sides of the stack in a track width direction thereof, wherein the stack has a stepped portion formed at the non-magnetic intermediate layer.
    • 磁场检测元件包括包括上下磁性层的堆叠和夹在其间的非磁性中间层,其中磁性层的磁化根据外部磁场而变化; 上下屏蔽电极层沿层叠方向夹着堆叠,其中上下屏蔽电极层在堆叠方向上提供感测电流,并对堆叠进行磁屏蔽; 偏置磁性层,其设置在与空气轴承表面相对的所述堆叠的表面上,并且其中所述偏置磁性层在垂直于所述空气轴承表面的方向上向所述上部和下部磁性层施加偏置磁场; 以及设置在堆叠的轨道宽度方向两侧的绝缘层,其中堆叠具有形成在非磁性中间层的台阶部分。
    • 10. 发明申请
    • Magnetoresistive element including a pair of ferromagnetic layers coupled to a pair of shield layers
    • 磁阻元件包括耦合到一对屏蔽层的一对铁磁层
    • US20100103563A1
    • 2010-04-29
    • US12289517
    • 2008-10-29
    • Takahiko MachitaDaisuke MiyauchiTsutomu ChouToshiyuki Ayukawa
    • Takahiko MachitaDaisuke MiyauchiTsutomu ChouToshiyuki Ayukawa
    • G11B5/33
    • G11B5/3909B82Y10/00B82Y25/00G11B5/3912G11B2005/3996
    • A magnetoresistive element includes first and second shield portions and an MR stack. Each of the first and second shield portions includes a shield bias magnetic field applying layer, and a closed-magnetic-path-forming portion that forms a closed magnetic path in conjunction of the shield bias magnetic field applying layer. The closed-magnetic-path-forming portion includes a single magnetic domain portion. The MR stack is sandwiched between the respective single magnetic domain portions of the first and second shield portions. The closed-magnetic-path-forming portion includes a magnetic-path-expanding portion that forms a magnetic path, the magnetic path being a portion of the closed magnetic path and located between the shield bias magnetic field applying layer and the single magnetic domain portion. The magnetic-path-expanding portion has two end portions located at both ends of the magnetic path, and a middle portion located between the two end portions. A cross section of the magnetic path at the middle portion is greater in width than a cross section of the magnetic path at each of the two end portions.
    • 磁阻元件包括第一和第二屏蔽部分和MR堆叠。 第一和第二屏蔽部分中的每一个包括屏蔽偏置磁场施加层和闭合磁路形成部分,其结合屏蔽偏置磁场施加层形成闭合磁路。 封闭磁路形成部分包括单个磁畴部分。 MR堆叠被夹在第一和第二屏蔽部分的相应单个磁畴部分之间。 闭磁路形成部分包括形成磁路的磁路扩展部分,磁路是封闭磁路的一部分,位于屏蔽偏置磁场施加层和单磁畴部分之间 。 磁路扩展部分具有位于磁路两端的两个端部和位于两个端部之间的中间部分。 在中间部分处的磁路的横截面的宽度大于在两个端部中的每一个处的磁路的横截面。