会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • AUTOMATIC ANALYZER
    • 自动分析仪
    • US20130266484A1
    • 2013-10-10
    • US13988069
    • 2011-10-17
    • Kumiko KamiharaTomonori Mimura
    • Kumiko KamiharaTomonori Mimura
    • G01N21/59
    • G01N21/59G01N35/00613G01N35/00663G01N35/00732G01N2035/00851
    • Realized is an automatic analyzer that allows appropriate setting of analytical parameters which incorporate batch-to-batch variations in characteristics of reagents. The analytical parameters 35, consisting of fixed parameters 37 and variable parameters 38, are stored into a storage unit of the automatic analyzer. The fixed parameters 37 include a reagent-dispensing quantity, a sample-dispensing quantity, measuring wavelength, and the like, each of which becomes a pivot for measurement of a sample, and parameters to be used are selected from an item code and bottle code assigned to a reagent bottle 36. The variable parameters 38 include a linearity check value, a prozone check value, reaction limit absorbance, technical limits, first standard solution absorbance, variation allowable absorbance, and the like, each of which is associated with sample-measurement result checks. The variable parameters 38 have a plurality of versions, and the automatic analyzer has a control unit, which reads bar code information from the reagent bottle and adopts variable parameters of a corresponding version with the item code, the bottle code, and batch information relating to the reagent, as a key.
    • 实现了一种自动分析仪,允许适当设置分析参数,这些分析参数包含试剂特性的批次间变化。 由固定参数37和可变参数38组成的分析参数35被存储在自动分析器的存储单元中。 固定参数37包括试剂分注量,样品分注量,测量波长等,其每一个都成为样品的测量的枢轴,并且要使用的参数从项目代码和瓶子代码中选择 分配给试剂瓶36.可变参数38包括线性检验值,前区检验值,反应极限吸光度,技术限度,第一标准溶液吸光度,变化允许吸光度等,其中每一个与样品 - 测量结果检查。 可变参数38具有多个版本,并且自动分析器具有控制单元,其从试剂瓶读取条形码信息,并且采用相应版本的可变参数与项目代码,瓶子代码以及与 试剂,作为关键。
    • 6. 发明申请
    • AUTOMATIC ANALYSIS DEVICE AND AUTOMATIC ANALYSIS METHOD
    • 自动分析装置及自动分析方法
    • US20130046480A1
    • 2013-02-21
    • US13641881
    • 2011-04-05
    • Chihiro ManriSatoshi MitsuyamaTomonori MimuraKumiko Kamihara
    • Chihiro ManriSatoshi MitsuyamaTomonori MimuraKumiko Kamihara
    • G06F19/00G01N33/48
    • G01N21/272G01N21/78G01N35/00584G01N35/00693G01N2035/00465
    • There is provided a technique for automatically determining or predicting a line range specific to a sample that appears in a reaction curve in an automated analyzer for mixing a specimen and a reagent and measuring a change in a mixture of the specimen and the reagent with time. This invention approximates reaction curve data by a function and automatically determines a curve part at an early stage or a second stage of a reaction. The invention determines a line range not including a curve part for each sample and calculates a laboratory test value using absorbance data within the determined line range. This invention also automatically determines a start time of line at the early stage of the reaction on the basis of absorbance data obtained up to a point halfway through the reaction curve, predicts a line range on the basis of the end time of line and a planned end time of line, and calculates a predictive value on the basis of a result of the prediction.
    • 提供了一种用于自动确定或预测在自动分析器中出现在反应曲线中的样品特异性的线范围的技术,用于混合样品和试剂,并测量样品和试剂的混合物随时间的变化。 本发明通过功能近似反应曲线数据,并在反应的早期阶段或第二阶段自动确定曲线部分。 本发明确定不包括每个样品的曲线部分的线范围,并使用确定的线范围内的吸光度数据计算实验室测试值。 本发明还根据通过反应曲线中途的一点获得的吸光度数据自动确定反应初期的起始时间,基于线的结束时间和计划的预测线范围 并且基于预测结果来计算预测值。
    • 8. 发明申请
    • AUTOMATIC ANALYZER
    • 自动分析仪
    • US20110301917A1
    • 2011-12-08
    • US13133655
    • 2009-11-11
    • Kumiko KamiharaTomonori Mimura
    • Kumiko KamiharaTomonori Mimura
    • G06F17/18
    • G01N35/00693G01N35/00603G06F17/18
    • Abnormality causes are automatically identified during daily quality control, based on the focused consideration of complex uncertainty factors and, especially, of the causes of device-side abnormalities (i.e., abnormalities of the optical system and the dispenser mechanism), the latter of which are often difficult to identify.The analyzer performance that affects measurement results can be estimated from analysis parameters and calibration results. Thus, uncertainty estimates are automatically calculated for each analysis item during quality control, and the estimates are compared with uncertainties obtained during actual QC sample measurement, thereby monitoring and evaluating the analyzer performance. Also, measurements are performed on QC samples of multiple concentrations that contain substances known to subject to particular influences such as those of the optical system, sample dispenser, and reagent dispenser, so that the causes of abnormalities can be identified. Uncertainty estimates calculated from the parameters set for the analysis items are compared with uncertainties obtained from the QC sample measurements. The data sets that have value deviations are classified on an item-by-item basis, and the classification pattern is used to determine which analyzer component is abnormal.
    • 基于复杂不确定因素的重点考虑,特别是设备侧异常(即光学系统和分配器机构的异常)的原因,后者是在日常质量控制期间自动识别异常原因 往往难以识别。 影响测量结果的分析仪性能可以通过分析参数和校准结果进行估算。 因此,在质量控制期间,为每个分析项目自动计算不确定性估计,并将估计与实际QC样品测量期间获得的不确定性进行比较,从而监测和评估分析仪性能。 此外,对含有已知会受到光学系统,样品分配器和试剂分配器的特定影响的物质的多种浓度的QC样品进行测量,从而可以识别出异常的原因。 将从分析项目设置的参数中计算出的不确定度估计与从QC样本测量获得的不确定性进行比较。 具有价值偏差的数据集按逐项分类,分类模式用于确定哪个分析器组件异常。
    • 10. 发明申请
    • AUTOMATIC ANALYZER
    • 自动分析仪
    • US20090222213A1
    • 2009-09-03
    • US12388845
    • 2009-02-19
    • Yuko HAMAZUMITomonori MimuraYuki Fukuyama
    • Yuko HAMAZUMITomonori MimuraYuki Fukuyama
    • G01N33/48G06F19/00
    • G01N35/00663G01N2035/00673
    • The present invention provides an index that makes it possible to use, in an automatic analyzer, an approximate expression based on a theoretical chemical reaction formula derived from reaction process data, and automatically check for apparatus abnormalities, reagent deteriorations, and improper accuracy control during each continuous or individual inspection.Reaction process data, which is measured when the automatic analyzer determines the relationship between reaction absorbance and time, is approximated to ABS=A0+A1 (1−e−kt) by the least-squares method. The resulting reaction start point absorbance A0, final reaction absorbance A1, reaction rate constant k, and residual error, which is the aggregate sum of differences between approximate values and measured values, are then used as the index of reaction status.
    • 本发明提供一种能够在自动分析装置中使用基于从反应过程数据导出的理论化学反应式的近似表达式的指标,并且可以自动检查装置异常,试剂恶化和每次检测中的不正确的精度控制 连续或个别检查。 当自动分析仪确定反应吸光度和时间之间的关系时测量的反应过程数据通过最小二乘法近似为ABS = A0 + A1(1-e-kt)。 然后将所得到的反应起点吸光度A0,最终反应吸光度A1,反应速率常数k和剩余误​​差(即近似值和测量值之间的差值的总和)用作反应状态的指标。