会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Fuel cell disassembly method and fuel cell
    • 燃料电池拆卸方法和燃料电池
    • US20070082250A1
    • 2007-04-12
    • US10584342
    • 2004-12-24
    • Hiroshi SuzukiGo TejimaTomoaki NakashimaRyo Akagawa
    • Hiroshi SuzukiGo TejimaTomoaki NakashimaRyo Akagawa
    • H01M8/02H01M2/08B23P19/00
    • H01M8/2457H01M8/008H01M8/0271H01M8/241H01M8/2465H01M8/2483Y02W30/86Y10T29/49815
    • A process of disassembling a fuel cell 10 supplies a fluid to both a fuel gas conduit 6g and an oxidizing gas conduit 7g. Since outlets of the respective gas conduits 6g and 7g are shielded, the internal pressure or in-passage pressure of the respective gas conduits 6g and 7g gradually rises and eventually exceeds a specific in-passage pressure level for power generation of the fuel cell 10. The high in-passage pressure expands a gas diffusion electrode 4b of a membrane electrode assembly (MEA) 2 and a separator 6, which define the fuel gas conduit 6g, in opposite directions to make a clearance between the gas diffusion electrode 4b and the separator 6. Similarly the high in-passage pressure expands a gas diffusion electrode 5b of the MEA 2 and a separator 7, which define the oxidizing gas conduit 7g, in opposite directions to make a clearance between the gas diffusion electrode 5b and the separator 7. The supplied fluid then flows out through these clearances into seals between the separators 6 and 7 and the MEA 2. These flows raise the in-passage pressure and release the seals.
    • 燃料电池10的拆卸处理向燃料气体导管6g和氧化气体导管7g供给流体。 由于各个气体导管6g和7g的出口被屏蔽,所以各个气体导管6g和7g的内部压力或通道内压力逐渐上升,最终超过了特定的通道内压力水平,用于发电 燃料电池10。 高通道压力使膜电极组件(MEA)2的气体扩散电极4b和限定燃料气体导管6g的隔板6沿相反方向膨胀,以在气体扩散电极4b 和分离器6。 类似地,高通道压力使MEA2的气体扩散电极5b和限定氧化气体导管7g的隔板7以相反的方向膨胀,以在气体扩散电极5b和隔板7之间形成间隙 。 然后,所供应的流体通过这些间隙流出到分离器6和7与MEA 2之间的密封件中。 这些流动提高通道内压力并释放密封。
    • 5. 发明授权
    • Fuel cell safety system for vehicles
    • 汽车燃料电池安全系统
    • US08838342B2
    • 2014-09-16
    • US12668594
    • 2008-07-10
    • Kazuya MurataTomoaki Nakashima
    • Kazuya MurataTomoaki Nakashima
    • B60R22/00E05F15/00G05D1/00G05D3/00G06F7/00G06F17/00B60R21/0132B60W20/00B60R21/01
    • B60W10/28B60K28/14B60R21/0132B60R2021/01184B60R2021/01322B60W20/00
    • A mobile body capable of improving the accuracy of collision judgment. The mobile body including a fuel cell system has a first sensor which detects a physical quantity concerning the moving state of the mobile body, a second sensor which detects a physical quantity concerning the operation state of the fuel cell system, and a judgment section which receives detection signals from the first and second sensors to judge the presence of the collision of the mobile body based on the two detection signals. The judgment section can change a threshold value to be compared with the detected value of the first sensor in accordance with the detected value of the second sensor, to judge the presence of the collision of the mobile body. The first sensor can be constituted of an acceleration sensor, and the second sensor can be constituted of a gas pressure sensor or the like.
    • 能够提高碰撞判断精度的移动体。 包括燃料电池系统的移动体具有检测与移动体的移动状态有关的物理量的第一传感器,检测与燃料电池系统的运转状态有关的物理量的第二传感器,以及接收 来自第一和第二传感器的检测信号,以基于两个检测信号判断移动体的碰撞的存在。 判断部可以根据第二传感器的检测值,改变要与第一传感器的检测值进行比较的阈值,以判断移动体的碰撞的存在。 第一传感器可以由加速度传感器构成,第二传感器可以由气体压力传感器等构成。
    • 6. 发明申请
    • MOBILE BODY
    • 移动体
    • US20100191425A1
    • 2010-07-29
    • US12668594
    • 2008-07-10
    • Kazuya MurataTomoaki Nakashima
    • Kazuya MurataTomoaki Nakashima
    • G06F19/00B60R21/0132
    • B60W10/28B60K28/14B60R21/0132B60R2021/01184B60R2021/01322B60W20/00
    • This invention is related to a mobile body (5) capable of improving the accuracy of collision judgment. The mobile body including a fuel cell system (1) has a first sensor (101) which detects a physical quantity concerning the moving state of the mobile body (5), a second sensor which detects a physical quantity concerning the operation state of the fuel cell system, and a judgment section which receives detection signals from the first and second sensors to judge the presence of the collision of the mobile body (5) based on the two detection signals. The judgment section can change a threshold value to be compared with the detected value of the first sensor in accordance with the detected value of the second sensor, to judge the presence of the collision of the mobile body. The first sensor can be constituted of an acceleration sensor, and the second sensor can be constituted of a gas pressure sensor or the like.
    • 本发明涉及能够提高碰撞判断精度的移动体(5)。 包括燃料电池系统(1)的移动体具有检测与移动体(5)的移动状态有关的物理量的第一传感器(101),检测与燃料的运转状态有关的物理量的第二传感器 单元系统和判断部分,其接收来自第一和第二传感器的检测信号,以基于两个检测信号判断移动体(5)的碰撞的存在。 判断部可以根据第二传感器的检测值,改变要与第一传感器的检测值进行比较的阈值,以判断移动体的碰撞的存在。 第一传感器可以由加速度传感器构成,第二传感器可以由气体压力传感器等构成。
    • 7. 发明申请
    • Fuel cell system and vehicle with fuel cell system mounted thereon
    • 具有燃料电池系统的燃料电池系统和车辆
    • US20080152987A1
    • 2008-06-26
    • US10809511
    • 2004-03-26
    • Tomoaki NakashimaHaruyuki NakanishiShinichi Matsumoto
    • Tomoaki NakashimaHaruyuki NakanishiShinichi Matsumoto
    • H01M8/04
    • H01M8/249H01M8/04089H01M8/04126H01M8/0432H01M8/04492H01M8/04559H01M8/04589H01M8/04619H01M8/04649H01M8/04761H01M8/241H01M8/2483
    • A fuel cell system of the invention includes a tubular switching member 70 with slits 70a to shift their position and thereby vary an opening area of outlets of oxidizing gas conduits 36 in respective unit fuel cells 30 constituting a fuel cell stack 20. The system further includes a drive roller 74 and a stepping motor 79 that function to change over the position of the slits 70a. An electronic control unit controls rotation of the stepping motor 79 to actuate the tubular switching member 70 first to narrow the opening area of the outlets of the oxidizing gas conduits 36 to or toward 0 and then to widen the opening area of the outlets of the oxidizing gas conduits 36, thereby generating pulsation in the oxidizing gas conduits 36. Water droplets flocculated in the oxidizing gas conduits 36 are thus discharged to the outlets with high efficiency. The structure of the embodiment does not require any bypass in the respective unit fuel cells 30. The characteristic structure of the invention uses the frame of the unit fuel cell 30 equivalent to the existing one and does not substantially increase the size of the fuel cell stack 20.
    • 本发明的燃料电池系统包括管状切换构件70,其具有狭缝70a以使其位置偏移,从而改变构成燃料电池堆20的各个单位燃料电池30中的氧化气体导管36的出口的开口面积。系统进一步 包括用于切换狭缝70a的位置的驱动辊74和步进马达79。 电子控制单元控制步进电动机79的旋转,首先致动管状切换构件70,使氧化剂气体导管36的出口的开口面积缩小到0°,然后扩大氧化剂的出口的开口面积 气体管道36,从而在氧化气体导管36中产生脉动。因此,氧化气体管道36中絮凝的水滴以高效率排放到出口。 本实施例的结构在相应的单元燃料电池30中不需要任何旁路。本发明的特征结构使用与现有燃料电池相当的单元燃料电池30的框架,并且基本上不增加燃料电池堆的尺寸 20。
    • 10. 发明授权
    • Fuel cell disassembly method and fuel cell
    • 燃料电池拆卸方法和燃料电池
    • US07758983B2
    • 2010-07-20
    • US10584342
    • 2004-12-24
    • Hiroshi SuzukiGo TejimaTomoaki NakashimaRyo Akagawa
    • Hiroshi SuzukiGo TejimaTomoaki NakashimaRyo Akagawa
    • H01M8/00H01M2/08
    • H01M8/2457H01M8/008H01M8/0271H01M8/241H01M8/2465H01M8/2483Y02W30/86Y10T29/49815
    • A process of disassembling a fuel cell 10 supplies a fluid to both a fuel gas conduit 6g and an oxidizing gas conduit 7g. Since outlets of the respective gas conduits 6g and 7g are shielded, the internal pressure or in-passage pressure of the respective gas conduits 6g and 7g gradually rises and eventually exceeds a specific in-passage pressure level for power generation of the fuel cell 10. The high in-passage pressure expands a gas diffusion electrode 4b of a membrane electrode assembly (MEA) 2 and a separator 6, which define the fuel gas conduit 6g, in opposite directions to make a clearance between the gas diffusion electrode 4b and the separator 6. Similarly the high in-passage pressure expands a gas diffusion electrode 5b of the MEA 2 and a separator 7, which define the oxidizing gas conduit 7g, in opposite directions to make a clearance between the gas diffusion electrode 5b and the separator 7. The supplied fluid then flows out through these clearances into seals between the separators 6 and 7 and the MEA 2. These flows raise the in-passage pressure and release the seals.
    • 燃料电池10的拆卸处理向燃料气体导管6g和氧化气体导管7g两者供给流体。 由于各气体导管6g,7g的出口被屏蔽,所以各气体导管6g,7g的内压或通路压力逐渐上升,最终超过燃料电池10的发电特定的通路内压力水平。 高通道压力使膜电极组件(MEA)2的气体扩散电极4b和限定燃料气体导管6g的隔板6沿相反方向膨胀,以使气体扩散电极4b和隔板 类似地,高通道压力使MEA2的气体扩散电极5b和限定氧化气体导管7g的隔板7以相反的方向膨胀,以在气体扩散电极5b和隔板7之间形成间隙。 所供应的流体然后通过这些间隙流出分离器6和7与MEA2之间的密封件。这些流动提高通道内压力并释放密封件。