会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system for dynamic task selection suitable for mapping external inputs and internal goals toward actions that solve problems or elicit rewards
    • 用于动态任务选择的方法和系统,适用于将外部输入和内部目标映射到解决问题或引发奖励的动作
    • US08762305B1
    • 2014-06-24
    • US13287953
    • 2011-11-02
    • Suhas E. ChelianNarayan Srinivasa
    • Suhas E. ChelianNarayan Srinivasa
    • G06F15/18G06F17/00G06N5/02G06N3/00G06N99/00
    • G06N3/008G06N3/08G06N99/005Y10S706/903
    • The present invention relates to a system for mapping external inputs and internal goals toward actions that solve problems or elicit external rewards. The present invention allows an instructor to test and train an agent to perform dynamic task selection (executive control) by using a schema that computes the agent's emotional and motivational states from reward/punishment inputs and sensory inputs (visual, auditory, kinematic, tactile, olfactory, somatosensory, and motor inputs). Specifically, the invention transforms the sensory inputs into unimodal and bimodal spatio-temporal schemas that are combined with the reward/punishment inputs and with the emotional and motivation states to create an external/internal schema (EXIN schema), that provides a compressed representation assessing the agent's emotions, motivations, and rewards. The invention uses the EXIN schema to create a motor schema to be executed by the agent to dynamically perform the task selected by the instructor.
    • 本发明涉及一种用于将外部输入和内部目标映射到解决问题或引发外部奖励的动作的系统。 本发明允许教师通过使用从奖励/惩罚输入和感觉输入(视觉,听觉,运动学,触觉学习和计算机学习)来计算代理人的情绪和动机状态的模式来测试和训练代理来执行动态任务选择(执行控制) 嗅觉,体感和运动输入)。 具体来说,本发明将感官输入转换成单峰和双峰时空模式,其与奖励/惩罚输入以及情绪和动机状态结合以创建外部/内部模式(EXIN模式),其提供压缩表示评估 代理人的情绪,动机和奖励。 本发明使用EXIN模式来创建要由代理执行的运动模式以动态地执行教师所选择的任务。
    • 2. 发明授权
    • System for anomaly detection
    • 异常检测系统
    • US08468104B1
    • 2013-06-18
    • US12592837
    • 2009-12-02
    • Suhas E. ChelianNarayan Srinivasa
    • Suhas E. ChelianNarayan Srinivasa
    • G06F15/18
    • G06K9/6222G01S13/887
    • Described is a system for anomaly detection to detect an anomalous object in an image, such as a concealed object beneath a person's clothing. The system is configured to receive, in a processor, at least one streaming peaked curve (R) representative of a difference between an input and a chosen category for a given feature. A degree of match is then generated between the input and the chosen category for all features. Finally, the degree of match is compared against a predetermined anomaly threshold and, if the degree of match exceeds the predetermined anomaly threshold, then the current feature is designated as an anomaly.
    • 描述了用于异常检测的系统,用于检测图像中的异常物体,例如人的衣服下方的隐藏物体。 系统被配置为在处理器中接收代表给定特征的输入和所选类别之间的差异的至少一个流式峰值曲线(R)。 然后在所有功能的输入和所选类别之间生成匹配度。 最后,将匹配度与预定的异常阈值进行比较,并且如果匹配度超过预定的异常阈值,则将当前特征指定为异常。
    • 5. 发明授权
    • Method for online learning and recognition of visual behaviors
    • 在线学习和识别视觉行为的方法
    • US08948499B1
    • 2015-02-03
    • US12962548
    • 2010-12-07
    • Swarup MedasaniDavid L. AllenSuhas E. ChelianYuri Owechko
    • Swarup MedasaniDavid L. AllenSuhas E. ChelianYuri Owechko
    • G06K9/62
    • G06K9/469G06K9/00771G06K9/00785G06K9/6296
    • Described is a system for object and behavior recognition which utilizes a collection of modules which, when integrated, can automatically recognize, learn, and adapt to simple and complex visual behaviors. An object recognition module utilizes a cooperative swarm algorithm to classify an object in a domain. A graph-based object representation module is configured to use a graphical model to represent a spatial organization of the object within the domain. Additionally, a reasoning and recognition engine module consists of two sub-modules: a knowledge sub-module and a behavior recognition sub-module. The knowledge sub-module utilizes a Bayesian network, while the behavior recognition sub-module consists of layers of adaptive resonance theory clustering networks and a layer of a sustained temporal order recurrent temporal order network. The described invention has applications in video forensics, data mining, and intelligent video archiving.
    • 描述了一种用于对象和行为识别的系统,其利用模块集合,当集成时,可以自动识别,学习和适应简单和复杂的视觉行为。 对象识别模块利用协作群算法对域中的对象进行分类。 基于图形的对象表示模块被配置为使用图形模型来表示域内对象的空间组织。 另外,推理和识别引擎模块由两个子模块组成:知识子模块和行为识别子模块。 知识子模块利用贝叶斯网络,而行为识别子模块由自适应共振理论聚类网络层和持续时间顺序复现时间顺序网络层组成。 所描述的发明在视频取证,数据挖掘和智能视频归档中具有应用。