会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SPAM FILTERING BASED ON STATISTICS AND TOKEN FREQUENCY MODELING
    • 基于统计和TOKEN频率建模的垃圾邮件过滤
    • US20100145900A1
    • 2010-06-10
    • US12328723
    • 2008-12-04
    • Lei ZhengSharat NarayanMark E. RisherStanley Ke WeiVishwanath Tumkur RamaraoAnirban Kundu
    • Lei ZhengSharat NarayanMark E. RisherStanley Ke WeiVishwanath Tumkur RamaraoAnirban Kundu
    • G06N5/02G06F15/16
    • H04L51/12G06N7/005
    • Embodiments are directed towards classifying messages as spam using a two phased approach. The first phase employs a statistical classifier to classify messages based on message content. The second phase targets specific message types to capture dynamic characteristics of the messages and identify spam messages using a token frequency based approach. A client component receives messages and sends them to the statistical classifier, which determines a probability that a message belongs to a particular type of class. The statistical classifier further provides other information about a message, including, a token list, and token thresholds. The message class, token list, and thresholds are provided to the second phase where a number of spam tokens in a given message for a given message class are determined. Based on the threshold, the client component then determines whether the message is spam or non-spam.
    • 实施例针对使用两阶段方法将消息分类为垃圾邮件。 第一阶段采用统计分类器根据消息内容分类消息。 第二阶段针对特定的消息类型来捕获消息的动态特征,并使用基于令牌频率的方法识别垃圾邮件。 客户端组件接收消息并将其发送到统计分类器,该分类器确定消息属于特定类型的类的概率。 统计分类器还提供关于消息的其他信息,包括令牌列表和令牌阈值。 消息类别,令牌列表和阈值被提供给第二阶段,其中给定消息类别的给定消息中的多个垃圾邮件令牌被确定。 基于阈值,客户端组件然后确定消息是垃圾邮件还是非垃圾邮件。
    • 2. 发明授权
    • Spam filtering based on statistics and token frequency modeling
    • 基于统计和令牌频率建模的垃圾邮件过滤
    • US08364766B2
    • 2013-01-29
    • US12328723
    • 2008-12-04
    • Lei ZhengSharat NarayanMark E. RisherStanley Ke WeiVishwanath Tumkur RamaraoAnirban Kundu
    • Lei ZhengSharat NarayanMark E. RisherStanley Ke WeiVishwanath Tumkur RamaraoAnirban Kundu
    • G06F15/16
    • H04L51/12G06N7/005
    • Embodiments are directed towards classifying messages as spam using a two phased approach. The first phase employs a statistical classifier to classify messages based on message content. The second phase targets specific message types to capture dynamic characteristics of the messages and identify spam messages using a token frequency based approach. A client component receives messages and sends them to the statistical classifier, which determines a probability that a message belongs to a particular type of class. The statistical classifier further provides other information about a message, including, a token list, and token thresholds. The message class, token list, and thresholds are provided to the second phase where a number of spam tokens in a given message for a given message class are determined. Based on the threshold, the client component then determines whether the message is spam or non-spam.
    • 实施例针对使用两阶段方法将消息分类为垃圾邮件。 第一阶段采用统计分类器根据消息内容分类消息。 第二阶段针对特定的消息类型来捕获消息的动态特征,并使用基于令牌频率的方法识别垃圾邮件。 客户端组件接收消息并将其发送到统计分类器,该分类器确定消息属于特定类型的类的概率。 统计分类器还提供关于消息的其他信息,包括令牌列表和令牌阈值。 消息类别,令牌列表和阈值被提供给第二阶段,其中给定消息类别的给定消息中的多个垃圾邮件令牌被确定。 基于阈值,客户端组件然后确定消息是垃圾邮件还是非垃圾邮件。