会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Heat exchanger and method for manufacturing the same
    • 热交换器及其制造方法
    • US20070163761A1
    • 2007-07-19
    • US10587173
    • 2005-02-10
    • Kazuhiko MinamiDaishi TanakaShintaro Nakagawa
    • Kazuhiko MinamiDaishi TanakaShintaro Nakagawa
    • F28F13/18
    • C23C22/34C23C22/361F25B39/04F28D1/05366F28D2021/0084F28F19/06F28F21/084
    • A method for manufacturing an aluminum heat exchanger includes the steps of: obtaining a heat exchanger tube 2 by forming a Zn thermally sprayed layer on a surface of an aluminum flat tube core so as to adjust Zn adhesion amount to 1 to 10 g/m2; obtaining a heat exchanger core by alternatively arranging the heat exchanger tube 2 and an aluminum fin 3 and brazing the heat exchanger tube and the fin with end portions of the heat exchanger tube connected to aluminum headers in fluid communication; and forming a chemical conversion treatment coat (corrosion resistance coat) on a surface of the heat exchanger core by subjecting the surface of the heat exchanger core to chemical conversion treatment using at least one chemical conversion treatment agent selected from the group consisting of phosphoric acid chromate, chromic acid chromate, phosphoric acid zirconium series, phosphoric acid titanium series, fluoridation zirconium series, and fluoridation titanium series. The obtained heat exchanger has a long last good corrosion resistance and can prevent occurrence of fin detachment and pit corrosion.
    • 铝热交换器的制造方法包括以下步骤:通过在铝扁平管芯的表面上形成Zn热喷镀层来获得热交换管2,以将Zn附着量调整为1〜10g / SUP> 2 ; 通过交替布置热交换器管2和铝翅片3并且通过流体连通的连接到铝集管的热交换器管的端部钎焊热交换器管和翅片来获得热交换器芯; 以及通过使用至少一种选自磷酸铬酸盐的化学转化处理剂对热交换器芯的表面进行化学转化处理,在热交换器芯的表面上形成化学转化处理涂层(耐腐蚀性涂层) ,铬酸铬酸盐,磷酸锆系列,磷酸钛系列,氟化锆系列和氟化钛系列。 获得的热交换器具有长时间的良好的耐腐蚀性,并且可以防止翅片脱落和凹坑腐蚀的发生。
    • 4. 发明授权
    • Heat sink for power module
    • 电源模块散热片
    • US08387685B2
    • 2013-03-05
    • US11919368
    • 2006-04-19
    • Masahiko KimbaraKeiji TohHidehito KuboKatsufumi TanakaKota OtoshiEiji KonoNobuhiro WakabayashiShintaro NakagawaYuichi FurukawaShinobu Yamauchi
    • Masahiko KimbaraKeiji TohHidehito KuboKatsufumi TanakaKota OtoshiEiji KonoNobuhiro WakabayashiShintaro NakagawaYuichi FurukawaShinobu Yamauchi
    • F28F7/00F28F3/12
    • H01L23/473F28F3/086F28F3/12H01L23/3731H01L23/3736H01L2224/48091H01L2224/48137H01L2924/00014
    • A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided.The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50. The flow-in path 30a flows a cooling medium into each parallel flow path 50. The flow-out path 40a flows the cooling medium out of each parallel flow path 50. A refrigerant flow path is constructed by the flow-in path 30a, each parallel flow path 50 and the flow-out path 40a.
    • 提供了能够实现进一步提高散热性能的功率模块的散热器,并且进一步提高了安装特性。 用于功率模块的散热器1具有层叠体20,第一侧板30和第二侧板40.层叠体20具有多个形成为板状的流路板21,多个相互平行的槽23 凹陷地布置在平坦的接合面22上。每个槽23通过每个接合面22层压每个流路板21而设置成平行于前表面的平行流动路径50.每个连接的每个槽23之外的部分 面22对层叠方向的各平行流路50形成传热路径70a。 在第一和第二侧板30,40中形成有流入路径30a和流出路径40a。流入路径30a和流出路径40a与层叠的侧面26a,26b接合 主体20并与每个平行流动路径50连通。流入路径30a将冷却介质流入每个平行流动路径50.流出路径40a将冷却介质从每个平行流动路径50流出。制冷剂 流路由流入路径30a,每个平行流路50和流出路径40a构成。
    • 8. 发明申请
    • HEAT SINK FOR POWER MODULE
    • 电源模块散热器
    • US20090314474A1
    • 2009-12-24
    • US11919368
    • 2006-04-19
    • Masahiko KimbaraKeiji TohHidehito KuboKatsufumi TanakaKota OtoshiEiji KonoNobuhiro WakabayashiShintaro NakagawaYuichi FurukawaShinobu Yamauchi
    • Masahiko KimbaraKeiji TohHidehito KuboKatsufumi TanakaKota OtoshiEiji KonoNobuhiro WakabayashiShintaro NakagawaYuichi FurukawaShinobu Yamauchi
    • H05K7/20F28D15/00F28F3/12
    • H01L23/473F28F3/086F28F3/12H01L23/3731H01L23/3736H01L2224/48091H01L2224/48137H01L2924/00014
    • A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided.The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50. The flow-in path 30a flows a cooling medium into each parallel flow path 50. The flow-out path 40a flows the cooling medium out of each parallel flow path 50. A refrigerant flow path is constructed by the flow-in path 30a, each parallel flow path 50 and the flow-out path 40a.
    • 提供了能够实现进一步提高散热性能的功率模块的散热器,并且进一步提高了安装特性。 用于功率模块的散热器1具有层叠体20,第一侧板30和第二侧板40.层叠体20具有多个形成为板状的流路板21,多个相互平行的槽23 凹陷地布置在平坦的接合面22上。每个槽23通过每个接合面22层压每个流路板21而设置成平行于前表面的平行流动路径50.每个连接的每个槽23之外的部分 面22对层叠方向的各平行流路50形成传热路径70a。 在第一和第二侧板30,40中形成有流入路径30a和流出路径40a。流入路径30a和流出路径40a与层叠的侧面26a,26b接合 主体20并与每个平行流动路径50连通。流入路径30a将冷却介质流入每个平行流动路径50.流出路径40a将冷却介质从每个平行流动路径50流出。制冷剂 流路由流入路径30a,每个平行流路50和流出路径40a构成。