会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Selective etchant for oxide sacrificial material in semiconductor device fabrication
    • 半导体器件制造中氧化物牺牲材料的选择性蚀刻剂
    • US06893578B1
    • 2005-05-17
    • US10010850
    • 2001-12-05
    • Peggy J. ClewsSeethambal S. Mani
    • Peggy J. ClewsSeethambal S. Mani
    • C03C15/00H01L21/311
    • B81C1/00595C03C15/00H01L21/31111
    • An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H2SO4). These acids can be used in the ratio of 1:3 to 3:1 HF:H2SO4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H2SO4 can be provided as “semiconductor grade” acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H2SO4.
    • 公开了用于在包括微机电,微机电或微流体装置的半导体器件的制造期间去除氧化物牺牲材料的蚀刻组合物和方法。 蚀刻组合物和方法基于氢氟酸(HF)和硫酸(H 2 SO 3 SO 4)的组合。 这些酸可以1:3至3:1的HF:H 2 SO 4的比例使用以除去全部或部分氧化物牺牲材料,同时提供高的 包括多晶硅,氮化硅和包含铝的金属的非氧化物材料的蚀刻选择性。 HF和H 2 SO 4 H两者可以提供为浓度通常为40-50重量%HF和至少90重量%的浓度的“半导体级”酸 H 2 SO 4 4。
    • 4. 发明授权
    • Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
    • 钨涂层,用于改善微机电装置的耐磨性和可靠性
    • US06290859B1
    • 2001-09-18
    • US09439103
    • 1999-11-12
    • James G. FlemingSeethambal S. ManiJeffry J. SniegowskiRobert S. Blewer
    • James G. FlemingSeethambal S. ManiJeffry J. SniegowskiRobert S. Blewer
    • H01L2100
    • B81C1/0096B81B3/0005B81B2201/035B81C1/00674B81C2201/0176B81C2201/112H01H2001/0057
    • A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.
    • 公开了一种方法,其中可以在微机电(MEM)装置内的暴露的半导体表面(例如硅,锗或碳化硅)上形成5-50纳米厚的共形钨涂层,以改善耐磨性和可靠性。 在清洁半导体表面之后形成钨涂层,以从表面除去任何有机材料和氧化物膜。 通过在含有气态三氟化氮(NF 3)的存在下,将含有MEM装置的基板加热至200-600℃的温度,进行最终的原位清洗步骤。 钨涂层然后可以通过半导体表面和六氟化钨(WF6)之间的化学反应在升高的温度,优选约450℃下形成。钨沉积工艺是自限制的,并且覆盖所有暴露的半导体表面,包括紧密的表面 联系。 本发明可以应用于许多不同类型的MEM装置,包括微型雷达,微镜和微型引擎。 此外,本发明的钨耐磨涂层可用于提高MEM装置内的一个或多个半导体表面的硬度,耐磨性,导电性,光反射率和化学惰性。