会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • MESOPOROUS NANOCRYSTALLINE FILM ARCHITECTURE FOR CAPACITIVE STORAGE DEVICES
    • 用于电容存储设备的多孔纳米薄膜电影架构
    • US20120026644A1
    • 2012-02-02
    • US13177401
    • 2011-07-06
    • Bruce S. DunnSarah H. TolbertJohn WangTorsten Brezesinski
    • Bruce S. DunnSarah H. TolbertJohn WangTorsten Brezesinski
    • H01G9/155
    • H01G11/84B82Y99/00H01G11/24H01G11/26H01G11/36H01G11/46Y02E60/13Y10S977/948
    • A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    • 提供了特别适用于具有短扩散路径长度和大表面积的结构的电容性能量存储的介孔纳米晶体金属氧化物构造以及生产方法。 能量密度大大增加,而不损害电容性电荷存储动力学,电极表现出长期的循环稳定性。 带电极的电荷存储装置可以使用浸入电解质中的三种不同的电荷存储机构:(1)阳离子可以存储在电极/电解质界面(非法拉第机制)的薄双层中; (2)如常规电池(法拉第机制),阳离子可与电活性材料的主体相互作用,然后电活性材料经历氧化还原反应或相变。 或(3)阳离子可以通过电荷转移过程(法拉第机制)电化学吸附在材料的表面上。
    • 10. 发明授权
    • Mesoporous nanocrystalline film architecture for capacitive storage devices
    • 用于电容式存储设备的介孔纳米晶膜结构
    • US08675346B2
    • 2014-03-18
    • US13177401
    • 2011-07-06
    • Bruce S. DunnSarah H. TolbertJohn WangTorsten Brezesinski
    • Bruce S. DunnSarah H. TolbertJohn WangTorsten Brezesinski
    • H01G9/00
    • H01G11/84B82Y99/00H01G11/24H01G11/26H01G11/36H01G11/46Y02E60/13Y10S977/948
    • A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    • 提供了特别适用于具有短扩散路径长度和大表面积的结构的电容性能量存储的介孔纳米晶体金属氧化物构造以及生产方法。 能量密度大大增加,而不损害电容性电荷存储动力学,电极表现出长期的循环稳定性。 带电极的电荷存储装置可以使用浸入电解质中的三种不同的电荷存储机构:(1)阳离子可以存储在电极/电解质界面(非法拉第机制)的薄双层中; (2)如常规电池(法拉第机制),阳离子可与电活性材料的主体相互作用,然后电活性材料经历氧化还原反应或相变。 或(3)阳离子可以通过电荷转移过程(法拉第机制)电化学吸附在材料的表面上。