会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Low substrate temperature deposition of diamond coatings derived from
glassy carbon
    • 由玻璃碳衍生的金刚石涂层的低基材温度沉积
    • US5453303A
    • 1995-09-26
    • US278931
    • 1994-07-22
    • Cressie E. Holcombe, Jr.Roland D. Seals
    • Cressie E. Holcombe, Jr.Roland D. Seals
    • C23C4/04C23C16/27B05D1/10
    • C23C16/276C23C16/278C23C4/04
    • A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.
    • 一种在小于约550℃的温度下在基体上沉积金刚石涂层的方法。玻璃碳和金刚石颗粒的粉末混合物通过高速氧焰装置,于是粉末在高速撞击之前被加热,抵抗 底物。 粉末混合物含有5至50个粉末体积百分数的金刚石颗粒,优选5至15个粉末体积百分比。 颗粒具有约5至约100微米的尺寸,金刚石颗粒为约5至约30微米。 设备的火焰提供约350至约1000米/秒的速度,结果是当撞击到基底上时,玻璃状碳被粉末混合物的金刚石含量揉合而转变为金刚石。
    • 9. 发明授权
    • Method of producing catalytic materials for fabricating nanostructures
    • 生产纳米结构催化材料的方法
    • US08377840B2
    • 2013-02-19
    • US12370892
    • 2009-02-13
    • Roland D. SealsPaul A. MenchhoferJane Y. HoweWei Wang
    • Roland D. SealsPaul A. MenchhoferJane Y. HoweWei Wang
    • B01J21/08B01J21/06
    • B01J23/755B01J21/08B01J23/74B01J23/745B01J31/0274B01J35/0013B01J37/0072B01J37/033B01J37/18B82Y40/00Y10S977/773Y10S977/81Y10S977/892
    • Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    • 描述了制备纳米催化剂的方法。 在一些实施方案中,纳米催化剂由粉末基底材料形成,并且是一些实施方案,纳米催化剂由固体基底材料形成。 在一些实施例中,衬底材料可以包括金属,陶瓷或硅或另一种准金属。 纳米催化剂通常具有邻近衬底材料的表面设置的金属纳米颗粒。 所述方法通常包括用螯合剂(例如具有解离的羧基官能团(-COO)的化学物质)官能化底物材料的表面,其提供对金属离子的增强的亲和力。 然后将官能化的基底表面暴露于含有金属离子的化学溶液。 然后将金属离子结合到衬底材料上,然后可以例如通过包括氢的气体流来还原,以形成邻近衬底表面的金属纳米颗粒。