会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Ultrasonic inspection method and system for detecting critical flaws
    • 检测关键缺陷的超声波检测方法及系统
    • US06408695B1
    • 2002-06-25
    • US09454189
    • 1999-12-03
    • Bernard Patrick BewlayJohn Broddus Deaton, Jr.Michael Francis Xavier Gigliotti, Jr.Robert Snee Gilmore
    • Bernard Patrick BewlayJohn Broddus Deaton, Jr.Michael Francis Xavier Gigliotti, Jr.Robert Snee Gilmore
    • G01N332
    • G01N29/348G01N29/11G01N2291/015G01N2291/02458G01N2291/2693
    • An ultrasonic inspection method for inspecting titanium material is provided. The ultrasonic inspection method is capable of detecting critical flaws in the titanium material that may limit titanium material applications. The ultrasonic inspection method comprises fixing at least one of frequency or acoustic entity size of the titanium material as a constant for the ultrasonic inspecting; wherein the frequency that is fixed is selected based on the size of the flaws deemed critical for mechanical performance—including fatigue performance—in the titanium material, and the grain size that is fixed selected based on the size of the flaws deemed critical for mechanical performance—including fatigue performance—in the titanium material; ultrasonic inspecting the titanium material in which the step of ultrasonic inspecting the titanium material generates scattering from microstructural characteristics and features of the titanium material; detecting generated scattering; characterizing the type of detected scattering; and determining if the titanium material comprises critical flaws based on the type of scattering. If the scattering comprises predominantly Rayleigh scattering, the step of determining determines that the titanium material comprises uniform-fine grain titanium, however, if the scattering comprises Rayleigh scattering and other types of scattering, the step of determining determines that the titanium material may comprise critical flaws that may limit applications of the titanium material. The invention also provides a system for implementing the method, as embodied by the invention.
    • 提供了用于检查钛材料的超声检查方法。 超声波检测方法能够检测可能限制钛材料应用的钛材料的临界缺陷。 超声波检查方法包括将钛材料的频率或声学实体尺寸中的至少一个固定为超声波检查的常数; 其中固定的频率基于对钛材料的机械性能(包括疲劳性能)至关重要的缺陷的尺寸和基于对于机械性能至关重要的缺陷尺寸而选择的晶粒尺寸进行选择 - 包括疲劳性能 - 钛材料; 超声波检查钛材料的超声波检测步骤从钛材料的显微组织特征和特征产生散射的钛材料; 检测产生的散射; 表征检测到的散射的类型; 以及确定钛材料是否包括基于散射类型的关键缺陷。 如果散射主要包括瑞利散射,则确定步骤确定钛材料包含均匀细晶粒钛,然而,如果散射包括瑞利散射和其它类型的散射,则确定步骤确定钛材料可能包括关键的 可能限制钛材料应用的缺陷。 本发明还提供了一种用于实现本发明所体现的方法的系统。
    • 6. 发明授权
    • Ultrasonic probe and method for monitoring materials processing in screw driven extruders
    • 超声波探头和用于监控螺杆式挤出机材料加工的方法
    • US06415665B1
    • 2002-07-09
    • US09523931
    • 2000-03-13
    • Robert Snee GilmoreMahari Tjahjadi
    • Robert Snee GilmoreMahari Tjahjadi
    • G01N2918
    • B29C47/92B29C47/0009B29C2947/9259B29C2947/92657B29C2947/92876B29C2947/92885B29C2947/92895
    • An ultrasonic probe and method for noninvasively monitoring materials processing in screw driven extruders. The noninvasive probe includes at least one ultrasonic transducer operable to transmit an ultrasonic signal on a signal path intersecting an inner sidewall of a barrel of the extruder and material between the inner sidewall of the barrel and an outer surface of a screw within the barrel. Information about the state of the material intersected by the ultrasonic signal is ascertainable from an elapsed time between reception of a first reflection of the ultrasonic signal and reception of a second reflection of the ultrasonic signal. The first reflection results when the ultrasonic signal exits the inner sidewall of the barrel and the second reflection results when the ultrasonic signal reaches one of the outer surface of the screw and partially solid material.
    • 一种超声波探头和用于在螺杆驱动挤出机中非侵入性监测材料加工的方法。 无创探测器包括至少一个超声波换能器,其可操作以在与挤出机的筒体的内侧壁相交的信号路径上传送超声波信号,并且在筒体的内侧壁与筒体内的螺杆的外表面之间的材料。 从超声信号的第一反射的接收和超声波信号的第二反射的接收之间的经过时间可以确定与超声信号相交的材料的状态的信息。 当超声波信号离开筒的内侧壁时产生第一反射,并且当超声波信号到达螺钉的外表面和部分固体材料时,产生第二反射。