会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Edge detection using structured illumination
    • 使用结构照明的边缘检测
    • US08773526B2
    • 2014-07-08
    • US12972386
    • 2010-12-17
    • Robert K. Bryll
    • Robert K. Bryll
    • H04N5/253
    • G01N21/8806G06K9/2027G06K9/2036G06T7/0006G06T7/13
    • A machine vision inspection system (MVIS) and a related light stripe edge feature location method are disclosed. The MVIS comprises a control system, a light stripe projection system, an imaging system, and a user interface. In a region of interest including the edge feature, the light stripe projection system focuses a light stripe transverse to the edge direction and across the edge feature, such that the light stripe has a changing stripe intensity profile along the light stripe. The imaging system acquires an image of the light stripe and the control system analyzes the image to determine the location of the edge feature based on a changing light intensity profile along the stripe. The method may be implemented in an edge detection video tool. The method may be advantageous for inspecting highly textured, beveled, chamfered, rounded or damaged edges, for example.
    • 公开了机器视觉检测系统(MVIS)和相关的轻条纹边缘特征定位方法。 MVIS包括控制系统,光条投影系统,成像系统和用户界面。 在包括边缘特征的感兴趣区域中,光条投影系统将横向于边缘方向和横跨边缘特征的轻条线聚焦,使得光条具有沿着光条纹的变化的条纹强度分布。 成像系统获取光条的图像,并且控制系统基于沿条纹的变化的光强度分布来分析图像以确定边缘特征的位置。 该方法可以在边缘检测视频工具中实现。 例如,该方法可有利于检查高纹理化,斜面,倒角,圆形或损坏的边缘。
    • 2. 发明申请
    • OPTICAL ABERRATION CORRECTION FOR MACHINE VISION INSPECTION SYSTEMS
    • 机器视觉检测系统的光学校正校正
    • US20090088999A1
    • 2009-04-02
    • US12264850
    • 2008-11-04
    • Robert K. BryllMark L. Delaney
    • Robert K. BryllMark L. Delaney
    • G01D18/00G06K9/00
    • G01B11/0608G01B21/045
    • A system and method for correcting surface height measurements for optical aberration is provided. Heights determined by an autofocus tool, which may depend on surface feature angles in a focus region of interest (ROI) and on the ROI location in the field of view, are corrected based on a novel error calibration. Error calibration data includes height corrections for different feature angles in images, and for multiple locations in a field of view. Height corrections are determined by weighting and combining the angle dependent error calibration data, e.g., based on a gradient (edge) angle distribution determined in the ROIs. When Z-heights are determined for multiple ROIs in a field of view, storage of image data from particular images of a global image stack may be efficiently controlled based on determining early in processing whether a particular image is a sufficiently focused “near-peak” focused image or not.
    • 提供了用于校正光学像差的表面高度测量的系统和方法。 基于新颖的误差校准,校正由自动聚焦工具确定的高度,其可以依赖于感兴趣的焦点区域(ROI)中的表面特征角度和视野中的ROI位置。 错误校准数据包括图像中不同特征角度的高度校正,以及视场中的多个位置。 通过加权和组合角度相关误差校准数据,例如基于在ROI中确定的梯度(边缘)角度分布来确定高度校正。 当在视野中为多个ROI确定Z高度时,可以基于在处理的早期确定特定图像是否是足够集中的“近峰值”来有效地控制来自全局图像堆栈的特定图像的图像数据的存储, 聚焦的图像或不。
    • 3. 发明授权
    • Optical aberration correction for machine vision inspection systems
    • 机器视觉检测系统的光学像差校正
    • US08311311B2
    • 2012-11-13
    • US12264850
    • 2008-11-04
    • Robert K. BryllMark L. Delaney
    • Robert K. BryllMark L. Delaney
    • G06K9/00
    • G01B11/0608G01B21/045
    • A system and method for correcting surface height measurements for optical aberration is provided. Heights determined by an autofocus tool, which may depend on surface feature angles in a focus region of interest (ROI) and on the ROI location in the field of view, are corrected based on a novel error calibration. Error calibration data includes height corrections for different feature angles in images, and for multiple locations in a field of view. Height corrections are determined by weighting and combining the angle dependent error calibration data, e.g., based on a gradient (edge) angle distribution determined in the ROIs. When Z-heights are determined for multiple ROIs in a field of view, storage of image data from particular images of a global image stack may be efficiently controlled based on determining early in processing whether a particular image is a sufficiently focused “near-peak” focused image or not.
    • 提供了用于校正光学像差的表面高度测量的系统和方法。 基于新颖的误差校准,校正由自动聚焦工具确定的高度,其可以依赖于感兴趣的焦点区域(ROI)中的表面特征角度和视野中的ROI位置。 错误校准数据包括图像中不同特征角度的高度校正,以及视场中的多个位置。 通过加权和组合角度相关误差校准数据,例如基于在ROI中确定的梯度(边缘)角度分布来确定高度校正。 当在视场中为多个ROI确定Z高度时,可以基于在处理的早期确定特定图像是否是足够集中的近峰聚焦图像来高效地控制来自全局图像堆栈的特定图像的图像数据的存储 或不。
    • 4. 发明申请
    • SYSTEM AND METHOD FOR FAST APPROXIMATE FOCUS
    • 快速近似聚焦的系统和方法
    • US20100158343A1
    • 2010-06-24
    • US12343383
    • 2008-12-23
    • Robert K. Bryll
    • Robert K. Bryll
    • G06K9/00
    • G03B13/36G02B7/36H04N5/23212
    • Fast approximate focus operations providing an approximately focused image that is sufficiently focused to support certain subsequent inspection operations. The operations are particularly advantageous when used to provide images for successive inspection operations that predominate when inspecting planar workpieces. Improved inspection throughput is provided because, in contrast to conventional autofocus operations, the fast approximate focus operations do not acquire an image stack during a run mode as a basis for determining a best focused image. Rather, during learn mode, a representative feature-specific focus curve and a focus threshold value are determined and used during run mode to provide an approximately focused image that reliably supports certain inspection operations. In one embodiment, an acceptable approximately focused inspection image is provided within a limit of two focus adjustment moves that provide two corresponding images. The adjustment moves are based on the representative feature-specific focus curve provided in learn mode.
    • 快速近似聚焦操作,提供足够集中以支持某些后续检查操作的大致聚焦图像。 当用于提供用于在检查平面工件时占主导地位的连续检查操作的图像时,操作特别有利。 提供了检查吞吐量的提高,因为与传统的自动对焦操作相比,快速近似聚焦操作在运行模式期间不能获得图像堆栈,作为确定最佳聚焦图像的基础。 相反,在学习模式期间,在运行模式期间确定并使用代表特征的焦点曲线和焦点阈值,以提供可靠地支持某些检查操作的近似聚焦的图像。 在一个实施例中,在提供两个相应图像的两个焦点调整移动的极限内提供了可接受的大致聚焦的检查图像。 调整移动是基于学习模式中提供的代表性特征焦点曲线。
    • 5. 发明授权
    • System and method for single image focus assessment
    • 单图像聚焦评估的系统和方法
    • US07668388B2
    • 2010-02-23
    • US11072360
    • 2005-03-03
    • Robert K. Bryll
    • Robert K. Bryll
    • G06K9/40
    • G06K9/6288G06K9/6217G06T7/0004G06T2207/10056G06T2207/30164G06T2207/30168
    • An image focus assessment method is provided that works reliably for images of a variety of relatively dissimilar workpieces or workpiece features. The focus assessment method is based on analysis of a single image (without the benefit of comparison to other images). The robustness of the focus assessment method is enhanced by the use of at least one classifier based on a plurality of focus classification features. In one application, a primary advantage of assessing focus from a single image is that an overall workpiece inspection time may be reduced by avoiding running an autofocus routine if an image is already in focus. In various embodiments, the focus assessment method may include an ensemble of classifiers. The ensemble of classifiers can be trained on different training data (sub)sets or different parameter (sub)sets, and their classification outcomes combined by a voting operation or the like, in order to enhance the overall accuracy and robustness of the focus assessment method.
    • 提供了可以对各种相对不同的工件或工件特征的图像可靠地工作的图像聚焦评估方法。 焦点评估方法是基于单个图像的分析(没有与其他图像进行比较的好处)。 通过使用基于多个焦点分类特征的至少一个分类器来增强焦点评估方法的鲁棒性。 在一个应用中,从单个图像评估焦点的主要优点是,如果图像已经在焦点中,则可以通过避免运行自动聚焦程序来减少总体工件检查时间。 在各种实施例中,焦点评估方法可以包括分类器的整体。 可以对不同的训练数据(子)集合或不同参数(子)集合进行训练,并通过投票操作等将其分类结果进行训练,以提高焦点评估方法的总体准确性和鲁棒性 。
    • 6. 发明授权
    • System and method for fast template matching by adaptive template decomposition
    • 通过自适应模板分解快速模板匹配的系统和方法
    • US07580560B2
    • 2009-08-25
    • US11184185
    • 2005-07-18
    • Robert K. Bryll
    • Robert K. Bryll
    • G06K9/00
    • G06K9/4609
    • A fast template matching method by adaptive template decomposition is provided. The template decomposition technique subdivides a template into a number of horizontal and/or vertical subdivisions and one-dimensional characterizations are determined for the subdivisions. The template decomposition may be adapted during learn mode operations of a general-purpose precision machine vision inspection system, with the support of corresponding user interfaces. The matching results for one or more template decomposition configurations may be evaluated by a user, or by an automatic decomposition configuration evaluation routine, to determine a configuration that provides a desirable trade-off between speed and matching position accuracy. Automatic workpiece inspection instructions may implement the configuration to repeatedly provide optimum speed versus accuracy trade-offs during run mode operations of the inspection system.
    • 提供了一种通过自适应模板分解的快速模板匹配方法。 模板分解技术将模板细分为多个水平和/或垂直细分,并为分类确定一维表征。 模板分解可以在通用精密机器视觉检查系统的学习模式操作期间进行调整,并具有对应的用户界面的支持。 一个或多个模板分解配置的匹配结果可以由用户或通过自动分解配置评估程序来评估,以确定在速度和匹配位置精度之间提供理想的权衡的配置。 自动工件检查指令可以实施该配置,以便在检查系统的运行模式操作期间重复提供最佳速度与精度权衡。
    • 7. 发明申请
    • EDGE DETECTION USING STRUCTURED ILLUMINATION
    • 使用结构照明的边缘检测
    • US20120154571A1
    • 2012-06-21
    • US12972386
    • 2010-12-17
    • Robert K. Bryll
    • Robert K. Bryll
    • H04N7/18G06K9/00
    • G01N21/8806G06K9/2027G06K9/2036G06T7/0006G06T7/13
    • A machine vision inspection system (MVIS) and a related light stripe edge feature location method are disclosed. The MVIS comprises a control system, a light stripe projection system, an imaging system, and a user interface. In a region of interest including the edge feature, the light stripe projection system focuses a light stripe transverse to the edge direction and across the edge feature, such that the light stripe has a changing stripe intensity profile along the light stripe. The imaging system acquires an image of the light stripe and the control system analyzes the image to determine the location of the edge feature based on a changing light intensity profile along the stripe. The method may be implemented in an edge detection video tool. The method may be advantageous for inspecting highly textured, beveled, chamfered, rounded or damaged edges, for example.
    • 公开了机器视觉检测系统(MVIS)和相关的轻条纹边缘特征定位方法。 MVIS包括控制系统,光条投影系统,成像系统和用户界面。 在包括边缘特征的感兴趣区域中,光条投影系统将横向于边缘方向和横跨边缘特征的轻条线聚焦,使得光条具有沿着光条纹的变化的条纹强度分布。 成像系统获取光条的图像,并且控制系统基于沿条纹的变化的光强度分布来分析图像以确定边缘特征的位置。 该方法可以在边缘检测视频工具中实现。 例如,该方法可有利于检查高纹理化,斜面,倒角,圆形或损坏的边缘。
    • 8. 发明授权
    • System and method for fast approximate focus
    • 快速近似焦点的系统和方法
    • US08111938B2
    • 2012-02-07
    • US12343383
    • 2008-12-23
    • Robert K. BryllMichael Nahum
    • Robert K. BryllMichael Nahum
    • G06K9/40
    • G03B13/36G02B7/36H04N5/23212
    • Fast approximate focus operations providing an approximately focused image that is sufficiently focused to support certain subsequent inspection operations. The operations are particularly advantageous when used to provide images for successive inspection operations that predominate when inspecting planar workpieces. Improved inspection throughput is provided because, in contrast to conventional autofocus operations, the fast approximate focus operations do not acquire an image stack during a run mode as a basis for determining a best focused image. Rather, during learn mode, a representative feature-specific focus curve and a focus threshold value are determined and used during run mode to provide an approximately focused image that reliably supports certain inspection operations. In one embodiment, an acceptable approximately focused inspection image is provided within a limit of two focus adjustment moves that provide two corresponding images. The adjustment moves are based on the representative feature-specific focus curve provided in learn mode.
    • 快速近似聚焦操作,提供足够集中以支持某些后续检查操作的大致聚焦图像。 当用于提供用于在检查平面工件时占主导地位的连续检查操作的图像时,操作特别有利。 提供了检查吞吐量的提高,因为与传统的自动对焦操作相比,快速近似聚焦操作在运行模式期间不能获得图像堆栈,作为确定最佳聚焦图像的基础。 相反,在学习模式期间,在运行模式期间确定并使用代表特征的焦点曲线和焦点阈值,以提供可靠地支持某些检查操作的近似聚焦的图像。 在一个实施例中,在提供两个相应图像的两个焦点调整移动的极限内提供了可接受的大致聚焦的检查图像。 调整移动是基于学习模式中提供的代表性特征焦点曲线。
    • 9. 发明授权
    • System and method for automatically recovering video tools in a vision system
    • 在视觉系统中自动恢复视频工具的系统和方法
    • US07454053B2
    • 2008-11-18
    • US10978227
    • 2004-10-29
    • Robert K. BryllKozo Ariga
    • Robert K. BryllKozo Ariga
    • G06K9/00
    • G06T7/0004G06K9/34G06K9/4638G06K9/6253G06K2209/19G06T2207/30164
    • Methods and systems for automatically recovering a failed video inspection tool in a precision machine vision inspection system are described. A set of recovery instructions may be associated or merged with a video tool to allow the tool to automatically recover and proceed to provide an inspection result after an initial failure. The recovery instructions include operations that evaluate and modify feature inspection parameters that govern acquiring an image of a workpiece feature and inspecting the feature. The set of instructions may include an initial phase of recovery that adjusts image acquisition parameters. If adjusting image acquisition parameters does not result in proper tool operation, additional feature inspection parameters, such as the tool position, may be adjusted. The order in which the multiple feature inspection parameters and their related characteristics are considered may be predefined so as to most efficiently complete the automatic tool recovery process.
    • 描述了在精密机器视觉检查系统中自动恢复失败的视频检查工具的方法和系统。 可以将一组恢复指令与视频工具相关联或合并,以允许工具自动恢复,并在初始故障之后继续提供检查结果。 恢复指令包括评估和修改管理获取工件特征图像并检查特征的特征检查参数的操作。 该组指令可以包括调整图像采集参数的恢复的初始阶段。 如果调整图像采集参数不会导致正确的刀具操作,可以调整附加的功能检查参数,如刀具位置。 可以预先考虑多个特征检查参数及其相关特征的顺序,以最有效地完成自动刀具恢复过程。