会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Transition-metal doped sulfide, selenide, and telluride laser crystal
and lasers
    • 过渡金属掺杂硫化物,硒化物和碲化物激光晶体和激光器
    • US5541948A
    • 1996-07-30
    • US346457
    • 1994-11-28
    • William F. KrupkeRalph H. PageLaura D. DeLoachStephen A. Payne
    • William F. KrupkeRalph H. PageLaura D. DeLoachStephen A. Payne
    • H01S3/16
    • H01S3/16H01S3/1621H01S3/1623H01S3/1628
    • A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.
    • 一类新型的固体激光晶体和激光器由过渡金属掺杂的硫化物,硒化物和碲化物主体晶体形成,它们具有四个重叠的配位置。 主体晶体包括II-VI化合物。 主体晶体掺杂有过渡金属激光离子,例如铬,钴或铁。 特别是Cr2 +掺杂的ZnS和ZnSe在2.3μm附近产生激光作用。 也可以使用具有相似结构的氧化物,氯化物,氟化物,溴化物和碘化物晶体。 这些激光材料的重要方面是主晶体的四面体位置对称性,低激发态吸收损耗和高发光效率,以及过渡金属离子的d4和d6电子结构。 相同的材料也可用作无源Q开关应用的可饱和吸收器。 激光材料可用作放大器和振荡器中的增益介质; 这些增益介质可以并入到波导和半导体激光器中。
    • 4. 发明授权
    • Efficient mass-selective three-photon ionization of zirconium atoms
    • 锆原子的高效质量选择性三光子电离
    • US5376246A
    • 1994-12-27
    • US984170
    • 1992-12-02
    • Ralph H. Page
    • Ralph H. Page
    • B01D59/34B01D5/00
    • B01D59/34
    • In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
    • 在AVLIS工艺中,91Zr通过三步光电离选择性地从天然锆中除去,其中Zr原子被波长为λ1的激光束照射,选择性地将91Zr原子升高到16000范围内的奇数奇偶校验E1能级 -19000cm -1,用波长为λ2的激光束照射,将原子从E1水平升高到35000-37000cm-1范围内的偶校验E2能量水平,并用激光束 具有波长λ3以引起原子从E2水平到高于53506cm -1的自动化水平的共振转变。 5603,65311或5756的λ3波长ANGSTROM将从36344cm-1的E2能量状态激发锆原子至自动化水平; 5666 ANGSTROM的λ3波长将导致从36068cm-1的E2水平的自动电离转变; 并且5662安培的λ3波长将导致E2水平为35904cm-1的原子的电离共振。
    • 6. 发明授权
    • Thermal lens elimination by gradient-reduced zone coupling of optical
beams
    • 通过光束的梯度减小区域耦合消除热透镜
    • US6167069A
    • 2000-12-26
    • US71248
    • 1998-05-01
    • Ralph H. PageRaymond J. Beach
    • Ralph H. PageRaymond J. Beach
    • H01S3/06H01S3/08H01S3/094H01S3/0941H01S3/04
    • H01S3/094H01S3/0405H01S3/0606H01S3/08072H01S3/0815H01S3/094034H01S3/0941
    • A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.
    • 热梯度减小区激光器包括激光介质和光学透明板,其折射率小于激光介质的折射率。 激光介质的泵面与光学透明部件的表面接合。 泵浦光被引导通过透明板以光学泵浦固态激光介质。 热传导主要是通过激光介质的表面,其中通过泵浦光引入热量。 由于激光介质的与泵面相反的一侧不与导体热接触,所以热量以与泵浦光的方向相反的方向流动,因此没有热通量(因此没有温度梯度 ),从而产生热梯度减小区。 在激光介质周围形成激光腔,使得在激光腔内振荡的激光通过从泵面和光学透明板之间的界面的全内反射反射并通过热梯度减小区进出。