会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System and method for streak discovery and prediction
    • 条纹发现和预测的系统和方法
    • US08930362B2
    • 2015-01-06
    • US13111259
    • 2011-05-19
    • Satyabrata PradhanRadha Krishna PisipatiSyed Mohammed
    • Satyabrata PradhanRadha Krishna PisipatiSyed Mohammed
    • G06F17/30G06K9/00
    • G06K9/0055
    • The disclosed embodiment relates to identifying performance regions in time-series data. An exemplary method comprises identifying, with a computing device, one or more streaks in the time-series data based on at least one streak parameter, ranking, with a computing device, the identified streaks based on at least one characteristic of the identified streaks, and predicting, with a computing device, a future occurrence of at least one streak based on the characteristics of the identified streaks. The steps of identifying and ranking may be carried out using at least one of a linear graph method, a statistical based approach, a curve-line intersection method, and a hypothesis-based method, and the step of predicting the future occurrence of at least one streak may comprise predicting at least one of how long a current streak will continue, when a current streak will end, and when a new streak will begin. The disclosed embodiment also relates to a system and computer-readable code that can be used to implement the exemplary methods.
    • 所公开的实施例涉及识别时间序列数据中的性能区域。 一种示例性方法包括使用计算设备,基于至少一个条纹参数来识别时间序列数据中的一个或多个条纹,使用计算设备将识别的条纹基于所识别的条纹的至少一​​个特征, 并且基于所识别的条纹的特征,使用计算设备预测至少一条条纹的未来发生。 识别和排序的步骤可以使用线性图法,基于统计的方法,曲线交叉法和基于假设的方法中的至少一种进行,以及至少预测未来发生的步骤 一条连线可能包括预测当前条纹将持续多长时间,当前条纹将结束,以及何时开始新条纹中的至少一条。 所公开的实施例还涉及可用于实现示例性方法的系统和计算机可读代码。
    • 3. 发明授权
    • Systems and methods for semantic data integration
    • 语义数据集成的系统和方法
    • US09406018B2
    • 2016-08-02
    • US13531117
    • 2012-06-22
    • Sujatha Raviprasad UpadhyayaRadha Krishna Pisipati
    • Sujatha Raviprasad UpadhyayaRadha Krishna Pisipati
    • G06F15/18G06N5/02G06K9/62G06N99/00G06N7/00
    • G06N5/02G06K9/6256G06K9/6269G06N5/025G06N7/005G06N99/005
    • Embodiments of the present invention relate to a system for data integration and information retrieval by bringing semantically related data together for a given context. As described, the integration of data may include the building of an ontology, the mapping of one or more processes, semantic maps and concept dictionaries in the ontology to one or more data sources, tagging the data sources in accordance with the ontology, providing a query interface for accepting an input query from a user, the mapping of the input query to one or more concepts in the ontology, and deriving one or more subqueries thereby, and the querying of data sources in accordance with the composed one or more subqueries, wherein the data sources queried are tagged with one or more concepts from the ontology. Additionally, the tracking of data across data sources in accordance with a defined data value chain is disclosed.
    • 本发明的实施例涉及一种用于数据集成和信息检索的系统,用于将给定上下文的语义相关数据一起提供。 如上所述,数据的集成可以包括构建本体,将本体中的一个或多个进程,语义地图和概念词典映射到一个或多个数据源,根据本体标记数据源,提供一个 用于接受来自用户的输入查询的查询界面,将输入查询映射到本体中的一个或多个概念,以及由此导出一个或多个子查询,以及根据所组成的一个或多个子查询来查询数据源, 其中查询的数据源被标记有来自本体的一个或多个概念。 另外,公开了根据定义的数据价值链对跨数据源的数据的跟踪。
    • 5. 发明申请
    • SYSTEM AND METHOD FOR STREAK DISCOVERY AND PREDICTION
    • 用于发现和预测的系统和方法
    • US20120254176A1
    • 2012-10-04
    • US13111259
    • 2011-05-19
    • Satyabrata PradhanRadha Krishna PisipatiSyed Mohammed
    • Satyabrata PradhanRadha Krishna PisipatiSyed Mohammed
    • G06F17/30
    • G06K9/0055
    • The disclosed embodiment relates to identifying performance regions in time-series data. An exemplary method comprises identifying, with a computing device, one or more streaks in the time-series data based on at least one streak parameter, ranking, with a computing device, the identified streaks based on at least one characteristic of the identified streaks, and predicting, with a computing device, a future occurrence of at least one streak based on the characteristics of the identified streaks. The steps of identifying and ranking may be carried out using at least one of a linear graph method, a statistical based approach, a curve-line intersection method, and a hypothesis-based method, and the step of predicting the future occurrence of at least one streak may comprise predicting at least one of how long a current streak will continue, when a current streak will end, and when a new streak will begin. The disclosed embodiment also relates to a system and computer-readable code that can be used to implement the exemplary methods.
    • 所公开的实施例涉及识别时间序列数据中的性能区域。 一种示例性方法包括使用计算设备,基于至少一个条纹参数来识别时间序列数据中的一个或多个条纹,使用计算设备将识别的条纹基于所识别的条纹的至少一​​个特征, 并且基于所识别的条纹的特征,使用计算设备预测至少一条条纹的未来发生。 识别和排序的步骤可以使用线性图法,基于统计的方法,曲线交叉法和基于假设的方法中的至少一种进行,以及至少预测未来发生的步骤 一条连线可能包括预测当前条纹将持续多长时间,当前条纹将结束,以及何时开始新条纹中的至少一条。 所公开的实施例还涉及可用于实现示例性方法的系统和计算机可读代码。