会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • BIOMETRIC FEATURE EXTRACTION USING MULTIPLE IMAGE INSTANTIATIONS
    • 生物特征提取使用多个图像的实现
    • US20130064434A1
    • 2013-03-14
    • US13698448
    • 2011-05-26
    • Taras P. RiopkaPranab MohantyLimin Ma
    • Taras P. RiopkaPranab MohantyLimin Ma
    • G06K9/46G06K9/00
    • G06K9/00073G06K9/00026G06K9/6255
    • Systems and methods acquire and/or generate multiple different images of the same biometric identity, identify specific instances of biometric features in each of the different images, and merge the identified specific instances of biometric features into a data record that provides a digital representation of the biometric identity. Examples of biometric identities include fingerprints, handprints, palm prints, and thumbprints. In one embodiment, a counter is associated with each specific instance of a biometric feature found in the multiple images. Specific instances of biometric features found most frequently have high counts and are indicative of true identifications; those with low counts are indicative of false identifications. A threshold distinguishes between true and false identifications. Those specific instances with counts below the threshold are excluded when the digital representation of the biometric identity is generated. Thus, the methodology eliminates false identifications of specific instances of biometric features while accentuating true identifications.
    • 系统和方法获取和/或生成相同生物特征识别的多个不同图像,识别每个不同图像中的生物特征的特定实例,并且将所识别的生物特征特征实例合并成数据记录,该数据记录提供 生物识别。 生物识别身份的示例包括指纹,手印,掌纹和指纹。 在一个实施例中,计数器与在多个图像中发现的生物测定特征的每个特定实例相关联。 发现的生物识别特征的具体实例最经常具有很高的计数,并且表明真实的识别; 低数量的人表示虚假身份证明。 门槛区分真假识别。 当产生生物特征识别的数字表示时,排除计数低于阈值的具体实例。 因此,该方法消除了生物识别特征的特定实例的虚假识别,同时突出了真实的识别。
    • 3. 发明授权
    • Reconstruction of biometric image templates using match scores
    • 使用匹配分数重建生物特征图像模板
    • US08165352B1
    • 2012-04-24
    • US12187028
    • 2008-08-06
    • Pranab MohantySudeep SarkarRangachar Kasturi
    • Pranab MohantySudeep SarkarRangachar Kasturi
    • G06K9/00
    • G06K9/00288G06K9/00926G06K9/6251
    • A method of reconstructing biometric face image templates of a face recognition system (FRS) using the match scores or distances provided by the FRS. The match scores represent the distance between a image introduced to the FRS and the unknown image template stored in the FRS. The present method uses an affine transformation approximating the unknown algorithm within the FRS and the match scores provided by the FRS to determine the coordinates of the unknown target template. The coordinates of the unknown target template are then applied to a pseudo-inversion of the affine transformation to produce a reconstructed image template of the unknown target. This reconstructed image template can then be used to ‘break-in’ to the FRS.
    • 使用FRS提供的匹配分数或距离重建面部识别系统(FRS)的生物特征面部图像模板的方法。 匹配分数表示引入FRS的图像与存储在FRS中的未知图像模板之间的距离。 本方法使用逼近FRS内的未知算法的仿射变换和由FRS提供的匹配分数来确定未知目标模板的坐标。 然后将未知目标模板的坐标应用于仿射变换的伪反演,以产生未知目标的重建图像模板。 然后可以将该重建的图像模板用于“插入”到FRS。
    • 4. 发明授权
    • Indexing face templates using linear models
    • 使用线性模型索引脸部模板
    • US08331632B1
    • 2012-12-11
    • US12371099
    • 2009-02-13
    • Pranab MohantySudeep SarkarRangachar KasturiP. Jonathon Phillips
    • Pranab MohantySudeep SarkarRangachar KasturiP. Jonathon Phillips
    • G06K9/00G06K9/62
    • G06K9/00288G06K9/00926G06K9/6251
    • A novel, linear modeling method to model a face recognition algorithm based on the match scores produced by the algorithm. Starting with a distance matrix representing the pair-wise match scores between face images, an iterative stress minimization algorithm is used to obtain an embedding of the distance matrix in a low-dimensional space. A linear transformation used to project new face images into the model space is divided into two sub-transformations: a rigid transformation of face images obtained through principal component analysis of face images and a non-rigid transformation responsible for preserving pair-wise distance relationships between face images. Also provided is a linear indexing method using the linear modeling method to perform the binning or algorithm-specific indexing task with little overhead.
    • 一种基于算法产生的匹配得分的面部识别算法建模的一种新颖的线性建模方法。 从表示面部图像之间的成对匹配分数的距离矩阵开始,使用迭代应力最小化算法来获得在低维空间中的距离矩阵的嵌入。 用于将新的面部图像投影到模型空间中的线性变换被分为两个子变换:通过面部图像的主成分分析获得的面部图像的刚性变换和负责保持成对的距离关系的非刚性变换 脸部图像。 还提供了一种使用线性建模方法的线性索引方法,以很少的开销执行分类或特定于算法的索引任务。