会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Micropressors, devices and methods for use in analyte monitoring systems
    • 用于分析物监测系统的微压机,装置和方法
    • US07711493B2
    • 2010-05-04
    • US11270856
    • 2005-11-09
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • G06F19/00G01N33/66
    • A61B5/681A61B5/0531A61B5/14532A61B5/7242G01N27/3271Y10T436/144444
    • The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors. Further, the present invention relates to algorithms for improved optimization of parameters for use in prediction models that require optimization of adjustable parameters.
    • 本发明包括一个或多个微处理器,其被编程为执行用于通过利用预测的较慢时间常数(1 / k2)来改善受试者的葡萄糖水平的预测来提高分析物监测装置的性能的方法。 在本发明的另一方面,预指数项(1 / c2)可以用于提供信号衰减的校正(例如增益因子)。 在其他方面,本发明涉及一种或多种微处理器,其包括编程以控制(i)用于条件筛选数据点以减少跳过的测量的方法的执行,(ii)用于限定插值/外推分析物测量值的方法,(iii) 获得分析物相关信号的最大积分的各种集成方法,以及包括这种微处理器的分析物监测装置。 此外,本发明涉及用于改进需要优化可调参数的预测模型中使用的参数优化的算法。
    • 3. 发明申请
    • Micropressors, devices and methods for use in analyte monitoring systems
    • 用于分析物监测系统的微压机,装置和方法
    • US20060074564A1
    • 2006-04-06
    • US11270856
    • 2005-11-09
    • Miroslaw BartkowiakWesley HarperEray KulcuMatthew LeshoJanet Tamada
    • Miroslaw BartkowiakWesley HarperEray KulcuMatthew LeshoJanet Tamada
    • G06F19/00
    • A61B5/681A61B5/0531A61B5/14532A61B5/7242G01N27/3271Y10T436/144444
    • The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors. Further, the present invention relates to algorithms for improved optimization of parameters for use in prediction models that require optimization of adjustable parameters.
    • 本发明包括一个或多个微处理器,其被编程为执行用于改进分析物监测装置的性能的方法,包括通过利用预测的较慢时间常数(1 / k 2)来预测受试者中的葡萄糖水平, 。 在本发明的另一方面,可以使用前指数项(1 / c2)来提供信号衰减的校正(例如,增益因子)。 在其他方面,本发明涉及一种或多种微处理器,其包括编程以控制(i)用于条件筛选数据点以减少跳过的测量的方法的执行,(ii)用于限定插值/外推分析物测量值的方法,(iii) 获得分析物相关信号的最大积分的各种集成方法,以及包括这种微处理器的分析物监测装置。 此外,本发明涉及用于改进需要优化可调参数的预测模型中使用的参数优化的算法。
    • 5. 发明授权
    • Systems and methods for determining an amount of starting reagent using the polymerase chain reaction
    • 使用聚合酶链式反应测定起始试剂的量的系统和方法
    • US08386184B2
    • 2013-02-26
    • US12196339
    • 2008-08-22
    • Miroslaw BartkowiakRichard L. Moore
    • Miroslaw BartkowiakRichard L. Moore
    • G06F19/00C12Q1/68C12P19/34
    • C12Q1/686G06F19/20
    • Systems and methods for calculating an initial amount of target nucleic acid N0 in a sample are provided. A plurality of fluorescent measurements is received. Each respective fluorescent measurement FSn is taken in a different cycle n in a PCR amplification experiment of the sample. Then, a model for the PCR amplification experiment is computed. For each respective fluorescent measurement, the model comprises a respective equation for Nn, where (i) Nn is the calculated amount of the target nucleic acid in cycle n of the corresponding PCR amplification experiment, and (ii) the equation for Nn is expressed in terms of K and N0, where K is the Michaelis-Menton constant. The model can be refined by adjusting K and N0 until differences between model values Nn and corresponding fluorescent measurements are minimized, thereby calculating the initial amount of a target nucleic acid N0 as the minimized value for N0 for the model.
    • 提供了用于计算样品中目标核酸N0的初始量的系统和方法。 接收多个荧光测量。 在样品的PCR扩增实验中,各自的荧光测量FSn以不同的周期n进行。 然后,计算PCR扩增实验的模型。 对于每个相应的荧光测量,该模型包括Nn的相应等式,其中(i)Nn是相应PCR扩增实验的周期n中靶核酸的计算量,(ii)Nn的方程式 K和N0的项,其中K是Michaelis-Menton常数。 可以通过调整K和N0来改进模型,直到模型值Nn和相应的荧光测量之间的差异被最小化,从而计算目标核酸N0的初始量作为模型的N0的最小值。
    • 6. 发明授权
    • Micropressors, devices and methods for use in analyte monitoring systems
    • 用于分析物监测系统的微压机,装置和方法
    • US07523004B2
    • 2009-04-21
    • US11270857
    • 2005-11-09
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • G06F19/00
    • A61B5/681A61B5/0531A61B5/14532A61B5/7242G01N27/3271Y10T436/144444
    • The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors. Further, the present invention relates to algorithms for improved optimization of parameters for use in prediction models that require optimization of adjustable parameters.
    • 本发明包括一个或多个微处理器,其被编程为执行用于通过利用预测的较慢时间常数(1 / k2)来改善受试者的葡萄糖水平的预测来提高分析物监测装置的性能的方法。 在本发明的另一方面,预指数项(1 / c2)可以用于提供信号衰减的校正(例如增益因子)。 在其他方面,本发明涉及一种或多种微处理器,其包括编程以控制(i)用于条件筛选数据点以减少跳过的测量的方法的执行,(ii)用于限定插值/外推分析物测量值的方法,(iii) 获得分析物相关信号的最大积分的各种集成方法,以及包括这种微处理器的分析物监测装置。 此外,本发明涉及用于改进需要优化可调参数的预测模型中使用的参数优化的算法。
    • 9. 发明授权
    • Microprocessors, devices and methods for use in analyte monitoring systems
    • 用于分析物监测系统的微处理器,设备和方法
    • US07519478B2
    • 2009-04-14
    • US11270063
    • 2005-11-09
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • Miroslaw BartkowiakWesley S. HarperEray KulcuMatthew J. LeshoJanet A. Tamada
    • G06F19/00
    • A61B5/681A61B5/0531A61B5/14532A61B5/7242G01N27/3271Y10T436/144444
    • The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors. Further, the present invention relates to algorithms for improved optimization of parameters for use in prediction models that require optimization of adjustable parameters.
    • 本发明包括一个或多个微处理器,其被编程为执行用于通过利用预测的较慢时间常数(1 / k2)来改善受试者的葡萄糖水平的预测来提高分析物监测装置的性能的方法。 在本发明的另一方面,预指数项(1 / c2)可以用于提供信号衰减的校正(例如增益因子)。 在其他方面,本发明涉及一种或多种微处理器,其包括编程以控制(i)用于条件筛选数据点以减少跳过的测量的方法的执行,(ii)用于限定插值/外推分析物测量值的方法,(iii) 获得分析物相关信号的最大积分的各种集成方法,以及包括这种微处理器的分析物监测装置。 此外,本发明涉及用于改进需要优化可调参数的预测模型中使用的参数优化的算法。
    • 10. 发明申请
    • Systems and Methods for Determining an Amount of Starting Reagent using the Polymerase Chain Reaction
    • 使用聚合酶链反应测定起始试剂量的系统和方法
    • US20090068666A1
    • 2009-03-12
    • US12196339
    • 2008-08-22
    • Miroslaw BartkowiakRichard L. Moore
    • Miroslaw BartkowiakRichard L. Moore
    • C12Q1/68
    • C12Q1/686G06F19/20
    • Systems and methods for calculating an initial amount of target nucleic acid N0 in a sample are provided. A plurality of fluorescent measurements is received. Each respective fluorescent measurement FSn is taken in a different cycle n in a PCR amplification experiment of the sample. Then, a model for the PCR amplification experiment is computed. For each respective fluorescent measurement, the model comprises a respective equation for Nn, where (i) Nn is the calculated amount of the target nucleic acid in cycle n of the corresponding PCR amplification experiment, and (ii) the equation for Nn is expressed in terms of K and N0, where K is the Michaelis-Menton constant. The model can be refined by adjusting K and N0 until differences between model values Nn and corresponding fluorescent measurements are minimized, thereby calculating the initial amount of a target nucleic acid N0 as the minimized value for N0 for the model.
    • 提供了用于计算样品中目标核酸N0的初始量的系统和方法。 接收多个荧光测量。 在样品的PCR扩增实验中,各自的荧光测量FSn以不同的周期n进行。 然后,计算PCR扩增实验的模型。 对于每个相应的荧光测量,该模型包括Nn的相应等式,其中(i)Nn是相应PCR扩增实验的周期n中靶核酸的计算量,(ii)Nn的方程式 K和N0的项,其中K是Michaelis-Menton常数。 可以通过调整K和N0来改进模型,直到模型值Nn和相应的荧光测量值之间的差异最小化,从而计算目标核酸N0的初始量作为模型的N0的最小值。