会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • High effectiveness cooled turbine vane or blade
    • 高效冷却涡轮叶片或叶片
    • US06974308B2
    • 2005-12-13
    • US09992250
    • 2001-11-14
    • Steve H. HalfmannYong W. KimMark C. MorrisMilton OrtizDavid R. PackCraig A. Wilson
    • Steve H. HalfmannYong W. KimMark C. MorrisMilton OrtizDavid R. PackCraig A. Wilson
    • F01D5/18F01D5/16F01D9/06
    • B22C9/04B22C9/103F01D5/187F05D2230/21F05D2260/202F05D2260/22141Y02T50/673Y02T50/676
    • A robust multiple-walled, multi-pass, high cooling effectiveness cooled turbine vane or blade designed for ease of manufacturability, minimizes cooling flows on highly loaded turbine rotors. The vane or blade design allows the turbine inlet temperature to increase over current technology levels while simultaneously reducing turbine cooling to low levels. A multi-wall cooling system is described, which meets the inherent conflict to maximize the flow area of the cooling passages while retaining the required section thickness to meet the structural requirements. Independent cooling circuits for the vane or blade's pressure and suction surfaces allow the cooling of the airfoil surfaces to be tailored to specific heat load distributions (that is, the pressure surface circuit is an independent forward flowing serpentine while the suction surface is an independent rearward flowing serpentine). The cooling air for the independent circuits is supplied through separate passages at the base of the vane or blade. The cooling air follows intricate passages to feed the serpentine thin outer wall passages, which incorporate pin fins, turbulators, etc. These passages, while satisfying the aero/thermal/stress requirements, are of a manufacturing configuration that may be cast with single crystal materials using conventional casting techniques.
    • 为了便于制造而设计的强大的多层,多通,高冷却效率的冷却涡轮叶片或叶片,使得高负载涡轮转子上的冷却流量最小化。 叶片或叶片设计允许涡轮进口温度升高超过当前技术水平,同时将涡轮机冷却降低到低水平。 描述了一种多壁冷却系统,其满足固有的冲突,以最大化冷却通道的流动面积,同时保持所需的部分厚度以满足结构要求。 用于叶片或叶片的压力和吸力表面的独立冷却回路允许翼型表面的冷却根据特定的热负荷分布进行调整(即,压力表面回路是独立的向前流动的蛇形管,而吸力表面是独立的向后流动 蛇纹石)。 用于独立回路的冷却空气通过在叶片或叶片的基部处的分开的通道供应。 冷却空气跟随复杂的通道,以供入蛇形薄壁外壁通道,这些通道包括销翅片,湍流器等。这些通道在满足航空/热/应力要求的同时,具有可以用单晶材料铸造的制造结构 使用常规铸造技术。
    • 10. 发明申请
    • Procedures for rapid build and improved surface characteristics in layered manufacture
    • 分层制造快速构建和改善表面特性的程序
    • US20050131570A1
    • 2005-06-16
    • US10762449
    • 2004-01-20
    • Vikram JamalabadCharles GasdaskaMilton Ortiz
    • Vikram JamalabadCharles GasdaskaMilton Ortiz
    • B29C67/00G06F19/00
    • B28B3/10B29C64/106B29C64/40
    • Methods for improving layered manufacturing techniques to improve an objects' surface properties and shorten manufacturing time for support structures. One aspect of the invention forms surfaces having reduced or no concavities between layers having improved crack resistance. One method deposits alternate, surface improvement material on each layer near the future location of the main material surface, followed by deposition of the main material, the edges of which conform to the previously deposited and solidified alternate material. In this method, the center of the main material layers can be concave rather than the interlayer regions. Another aspect of the invention provides removable structures to support the deposition of main material. The support structures provide support over main material cavities for depositing the material to form the cavity ceilings, while minimizing the time and material required to build the support structures. Minimized support structures include structures formed as columns supported by the cavity floor and angle braces to supported by the cavity walls. Some supports are supported by the side wall but not the floor, and other by the floor and not the side walls.
    • 改进分层制造技术以改善物体表面性能并缩短支撑结构的制造时间的方法。 本发明的一个方面形成具有减小的或不具有改善的抗裂性的层之间的凹面的表面。 一种方法在主材料表面的未来位置附近的每个层上沉积交替的表面改性材料,随后沉积主要材料,其边缘符合先前沉积和固化的替代材料。 在该方法中,主材料层的中心可以是凹形而不是层间区域。 本发明的另一方面提供了用于支撑主材料沉积的可移除结构。 支撑结构在主材料空腔上提供支撑,用于沉积材料以形成腔体天花板,同时最小化构建支撑结构所需的时间和材料。 最小化的支撑结构包括由腔体支撑的柱形成的结构和由腔壁支撑的角撑架。 一些支撑件由侧壁支撑,但不由地板支撑,而另一些由地板而不是侧壁支撑。