会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Continuous-range hydrogen sensors
    • 连续式氢传感器
    • US07237429B2
    • 2007-07-03
    • US11063119
    • 2005-02-22
    • Greg MontyKwok NgMohshi YangRichard Finh
    • Greg MontyKwok NgMohshi YangRichard Finh
    • G01N7/00
    • G01N27/127G01N33/005
    • The present invention provides for novel hydrogen sensors and methods for making same. In some embodiments, such novel hydrogen sensors are continuous-range hydrogen sensors comprising Pd—Ag nanoparticles arrayed as nanowires or two-dimensional shapes on a resistive surface. Such continuous-range hydrogen sensors are capable of measuring a wide range of hydrogen gas concentration over a wide temperature range. Unlike existing hydrogen sensors that experience a large change in resistance at a certain hydrogen concentration, the continuous-range hydrogen sensor of the present invention changes resistance continuously over a broad range of hydrogen concentration. This continuous change varies slowly with hydrogen concentration and is predictable such that the continuous-range hydrogen sensor can be used to measure hydrogen concentration continuously from a few ppm to 40,000 ppm level or higher over a broad range of temperatures (e.g., −40° C. to +150° C.).
    • 本发明提供新颖的氢传感器及其制造方法。 在一些实施方案中,这种新型氢传感器是连续范围的氢传感器,其包括在电阻表面上排列为纳米线或二维形状的Pd-Ag纳米颗粒。 这种连续范围的氢传感器能够在宽的温度范围内测量宽范围的氢气浓度。 与现有氢传感器不同,在一定的氢浓度下,电阻的变化很大,本发明的连续范围氢传感器在宽范围的氢浓度下连续地改变电阻。 这种连续变化随氢气浓度而变化缓慢,并且是可预测的,使得连续范围氢传感器可用于在宽范围的温度(例如-40℃)下连续测量从几ppm到40,000ppm水平或更高的氢浓度 至+ 150℃)。
    • 5. 发明申请
    • FORMATION OF METAL NANOWIRES FOR USE AS VARIABLE-RANGE HYDROGEN SENSORS
    • 形成用作可变范围的氢传感器的金属纳米颗粒
    • US20080078234A1
    • 2008-04-03
    • US11486558
    • 2006-07-14
    • Greg MontyKwok NgMohshi Yang
    • Greg MontyKwok NgMohshi Yang
    • G01N27/00B82B3/00
    • G01N27/127G01N33/005
    • The present invention provides for variable-range hydrogen sensors and methods for making same. Such variable-range hydrogen sensors comprise a series of fabricated Pd—Ag (palladium-silver) nanowires—each wire of the series having a different Ag to Pd ratio—with nanobreakjunctions in them and wherein the nanowires have predefined dimensions and orientation. When the nanowires are exposed to H2, their lattace swells when the H2 concentration reaches a threshold value (unique to that particular ratio of Pd to Ag). This causes the nanobreakjunctions to close leading to a 6-8 orders of magnitude decrease in the resistance along the length of the wire and providing a sensing mechanism for a range of hydrogen concentrations.
    • 本发明提供可变范围氢传感器及其制造方法。 这种可变范围氢传感器包括一系列制备的Pd-Ag(钯 - 银)纳米线 - 该系列中的每根线具有不同的Ag与Pd的比例,并且其中纳米区域结合在一起,并且其中纳米线具有预定义的尺寸和取向。 当纳米线暴露于H 2 O 2时,当H 2 O 2浓度达到阈值(对于特定的Pd与Ag的比率是唯一的)时,它们的晶格膨胀。 这导致纳米划痕结合,导致沿导线长度的电阻降低6-8个数量级,并为一定范围的氢浓度提供感测机制。
    • 7. 发明授权
    • Electrostatic protection devices for protecting semiconductor integrated
circuitry
    • 用于保护半导体集成电路的静电保护装置
    • US5744840A
    • 1998-04-28
    • US560671
    • 1995-11-20
    • Kwok Kwok Ng
    • Kwok Kwok Ng
    • H01L27/04H01L21/822H01L23/60H01L27/02H01L29/78H01L23/62
    • H01L27/0259H01L27/0255
    • Protecting device structures are disclosed for protecting one or more protected nodes of an integrated circuit to be protected against electrostatic discharges (ESD). Typically the integrated circuit includes n channel MOS transistors having terminals connected to the protected nodes. In a specific embodiment, the protecting device structure includes an MOS diode structure having source and drain regions and at least a pair of localized auxiliary region. Each of this pair of localized auxiliary regions has a conductivity type that is opposite from that of the source and drain regions. These localized auxiliary regions are located contiguous with the source and drain regions, respectively, and in the channel between the source and drain regions. The protecting device structure is integrated in the integrated circuit and has a terminal that is connected to a terminal of each of the one or more protected nodes of the integrated circuit.
    • 公开了保护装置结构,用于保护被保护免受静电放电(ESD)的集成电路的一个或多个受保护节点。 通常,集成电路包括具有连接到受保护节点的端子的n沟道MOS晶体管。 在具体实施例中,保护装置结构包括具有源极和漏极区域以及至少一对局部辅助区域的MOS二极管结构。 这对局部辅助区域中的每一个具有与源区和漏区相反的导电类型。 这些局部辅助区域分别与源极和漏极区域以及在源极和漏极区域之间的沟道中定位。 保护装置结构集成在集成电路中,并且具有连接到集成电路的一个或多个受保护节点中的每一个的终端的终端。
    • 9. 发明授权
    • Formation of metal nanowires for use as variable-range hydrogen sensors
    • 用作可变范围氢传感器的金属纳米线的形成
    • US07367215B2
    • 2008-05-06
    • US11486558
    • 2006-07-14
    • Greg MontyKwok NgMohshi Yang
    • Greg MontyKwok NgMohshi Yang
    • G01N7/00
    • G01N27/127G01N33/005
    • The present invention provides for variable-range hydrogen sensors and methods for making same. Such variable-range hydrogen sensors comprise a series of fabricated Pd—Ag (palladium-silver) nanowires—each wire of the series having a different Ag to Pd ratio—with nanobreakjunctions in them and wherein the nanowires have predefined dimensions and orientation. When the nanowires are exposed to H2, their lattice swells when the H2 concentration reaches a threshold value (unique to that particular ratio of Pd to Ag). This causes the nanobreakjunctions to close leading to a 6-8 orders of magnitude decrease in the resistance along the length of the wire and providing a sensing mechanism for a range of hydrogen concentrations.
    • 本发明提供可变范围氢传感器及其制造方法。 这种可变范围氢传感器包括一系列制备的Pd-Ag(钯 - 银)纳米线 - 该系列中的每根线具有不同的Ag与Pd的比例,并且其中纳米区域结合在一起,并且其中纳米线具有预定义的尺寸和取向。 当纳米线暴露于H 2 O 2时,当H 2 O 2浓度达到阈值(对于特定的Pd与Ag的比率是唯一的)时,它们的晶格膨胀。 这导致纳米划痕结合,导致沿导线长度的电阻降低6-8个数量级,并为一定范围的氢浓度提供感测机制。
    • 10. 发明申请
    • III-V power field effect transistors
    • US20070096146A1
    • 2007-05-03
    • US11641507
    • 2006-12-19
    • Jeff BudePeide YeKwok NgBin Yang
    • Jeff BudePeide YeKwok NgBin Yang
    • H01L29/43H01L29/74H01L31/111
    • H01L29/4983H01L29/812
    • A field effect transistor configured for use in high power applications and a method for its fabrication is disclosed. The field effect transistor is formed of III-V materials and is configured to have a breakdown voltage that is advantageous for high power applications. The field effect transistor is so configured by determining the operating voltage and the desired breakdown voltage for that operating voltage. A peak electric field is then identified that is associated with the operating voltage and desired breakdown voltage. The device is then configured to exhibit the identified peak electric field at that operating voltage. The device is so configured by selecting device features that control the electrical potential in the device drift region is achieved. These features include the use of an overlapping gate or field plate in conjunction with a barrier layer overlying the device channel, or a p-type pocket formed in a region of single-crystal III-V material formed under the device channel. The overlapping gate/field plate or p-type pocket extend into the drift region of the device, controlling the electrical potential of the device in a manner that provides the desired control of the electrical potential in the drift region.