会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ZONE PLATE
    • 区域板块
    • US20140204463A1
    • 2014-07-24
    • US14240393
    • 2011-09-28
    • Ken HaradaTeruo Kohashi
    • Ken HaradaTeruo Kohashi
    • G02B5/18
    • G02B5/1876G02B27/42G02B27/4233G02B27/4266G02B27/44G21K1/06
    • Although, conventionally, there were two methods, (1) a wave was transmitted through a spiral phase plate and (2) a diffraction grating containing an edge dislocation was used, they incurred complication of a configuration and securement of a larger amount of space and were not efficient because each of the spiral wave generation methods needed an incident wave to be a plane wave and at least one time of imaging is necessary at the time of wave irradiation on an observation object. In order to efficiently generate the spiral wave having a sufficient intensity, a structure of edge dislocation is taken in into a pattern of the zone plate and a spiral pattern containing a discontinuous zone is formed. Moreover, a thickness and a quality of material that change the phase of the wave by an odd multiple of π are selected for a material of the wave-blocking section in the pattern.
    • 虽然通常有两种方法:(1)通过螺旋相板传播波,(2)使用包含边缘位错的衍射光栅,它们引起配置的复杂化并确保更大的空间, 不是有效的,因为每个螺旋波产生方法需要入射波为平面波,并且在观察对象上的波照射时需要至少一次成像时间。 为了有效地产生具有足够强度的螺旋波,边缘位错的结构被取入到区域板的图案中,并且形成包含不连续区域的螺旋图案。 此外,将波的相位改变为奇数倍的材料的厚度和质量; 被选择为图案中的波形阻挡部分的材料。
    • 5. 发明授权
    • Electron interferometer or electron microscope
    • 电子干涉仪或电子显微镜
    • US07816648B2
    • 2010-10-19
    • US11547054
    • 2005-03-07
    • Ken HaradaTetsuya AkashiYoshihiko TogawaTsuyoshi Matsuda
    • Ken HaradaTetsuya AkashiYoshihiko TogawaTsuyoshi Matsuda
    • G01B15/00
    • H01J37/295H01J37/26H01J2237/1514H01J2237/2614
    • In an electron beam interference system using an electron biprism, which is capable of independently controlling each of the interference fringe spacing s and the interference width W, both of which are important parameters for an interferometer and for an interferogram acquired by the interferometer, an optical system used in a two-stage electron biprism interferometer is adopted. The optical system uses two stages of electron biprisms in an optical axis direction to give the flexibility to the relative magnification relative to a specimen image and that relative to an image of a filament electrode of the electron biprism. In addition, as a two-stage configuration in which two objective lenses (51, 52) are combined, independently controlling the focal length of each objective lens makes it possible to set the relative magnification relative to a specimen image and that relative to an image of the filament electrode of the electron biprism at arbitrary values.
    • 在使用电子双棱镜的电子束干涉系统中,其能够独立地控制每个干涉条纹间距s和干涉宽度W,这两者都是干涉仪和干涉仪获取的干涉图的重要参数,光学 采用两级电子双棱镜干涉仪中使用的系统。 光学系统在光轴方向上使用两阶段的电子双棱镜,以相对于标本图像相对于相对放大率以及相对于电子双棱镜的细丝电极的图像具有灵活性。 另外,作为组合了两个物镜(51,52)的两级配置,独立地控制每个物镜的焦距使得可以相对于标本图像和相对于图像设置相对放大率 的电子双棱镜的灯丝电极的任意值。
    • 7. 发明申请
    • Interferometer
    • 干涉仪
    • US20090273789A1
    • 2009-11-05
    • US11883568
    • 2006-01-27
    • Ken HaradaTetsuya AkashiYoshihiko TogawaTsuyoshi MatsudaNoboru Moriya
    • Ken HaradaTetsuya AkashiYoshihiko TogawaTsuyoshi MatsudaNoboru Moriya
    • G01B9/02H01J3/14
    • H01J37/295G01N23/00G02B19/0014G02B19/0047G03H5/00H01J37/04H01J2237/1514H01J2237/228H01J2237/2614
    • A double-biprism electron interferometer is an optical system which dramatically increases the degree of freedom of a conventional one-stage electron interferometer. The double biprism interferometer, however, is the same as the optical system of the single electron biprism in terms of the one-dimensional shape of an electron hologram formed by filament electrodes, the direction of an interference area, and the azimuth of the interference fringes. In other words, the longitudinal direction of the interference area is determined corresponding to the direction of the filament electrodes, and the azimuth of the interference fringes only coincides with and is in parallel with the longitudinal direction of the interference area. An interferometer according to the present invention has upper-stage and lower-stage electron biprisms, and operates with an azimuth angle Φ between filament electrodes of the upper-stage and lower-stage electron biprisms to arbitrarily control an interference area and an azimuth θ of the interference fringes formed therein.
    • 双二棱镜电子干涉仪是一种显着提高常规一级电子干涉仪自由度的光学系统。 然而,双棱镜干涉仪与由单丝电极组成的电子全息图的一维形状,干涉区域的方向和干涉条纹的方位角的单电子双棱镜的光学系统相同 。 换句话说,干扰区域的长度方向根据灯丝电极的方向确定,并且干涉条纹的方位角仅与干涉区域的纵向方向一致并且平行。 根据本发明的干涉仪具有上级和下级电子双极性,并且在上级和下级电子双极之间的细丝电极之间的方位角Φi操作,以任意地控制干扰区域和方位角θ 其中形成的干涉条纹。
    • 9. 发明授权
    • Electron beam interference device and electron beam interferometry
    • 电子束干涉装置和电子束干涉测量
    • US08946628B2
    • 2015-02-03
    • US13810934
    • 2012-02-03
    • Ken HaradaHiroto Kasai
    • Ken HaradaHiroto Kasai
    • G01N23/00G21K7/00H01J37/252G01N23/04H01J37/26H01J37/147
    • H01J37/252G01N23/04H01J37/147H01J37/26H01J37/295H01J2237/221H01J2237/226H01J2237/2505
    • There is a limit in range and distance in which an electron beam can interfere and electron interference is implemented within a range of a coherence length. Therefore, interference images are consecutively recorded for each interference region width from an interference image of a reference wave and an observation region adjacent to the reference wave by considering that a phase distribution regenerated and observed by an interference microscopy is a differential between phase distributions of two waves used for interference and a differential image between phase distributions of a predetermined observation region and a predetermined reference wave is acquired by acquiring integrating phase distributions acquired by individually regenerating the interference images. This work enables a wide range of interference image which is more than a coherence length by arranging phase distribution images performed and acquired in the respective phase distributions in a predetermined order.
    • 电子束可能干扰的范围和距离有限制,并且在相干长度的范围内实现电子干扰。 因此,通过考虑到由干涉显微镜再生和观测到的相位分布是两相的相位分布之间的差分,从参考波的干涉图像和与参考波相邻的观察区域的每个干涉区域宽度连续记录干涉图像 通过获取通过单独再生干涉图像获得的积分相位分布来获取用于干扰的波和预定观察区域和预定参考波的相位分布之间的差分图像。 通过以预定的顺序排列在各个相位分布中执行和获取的相位分布图像,能够实现大于相干长度的宽范围的干涉图像。