会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • System And Method For Redistributing Interest In A Hierarchical Data Structure Representation
    • 在分层数据结构表示中重新分配兴趣的系统和方法
    • US20100077352A1
    • 2010-03-25
    • US12628192
    • 2009-11-30
    • Jeffrey M. HeerStuart K. Card
    • Jeffrey M. HeerStuart K. Card
    • G06F17/30G06F3/048
    • G06T11/206Y10S707/99943
    • A system and method for redistributing interest in a hierarchical data structure representation is provided. A data representation of a hierarchical data structure includes depth levels having one or more blocks of sibling nodes associated with node interest characteristics. Two or more of the sibling nodes are combined as aggregates into elided subsets. One of the elided subsets is selected and expanded to reveal the aggregated sibling nodes. A breadth of the depth level in which the block is located is determined. A further determination that the breadth exceeds a constrained breadth extent for the data representation is made. The breadth is decreased by ordering the sibling nodes in the depth level by their node interest characteristic and by combining at least a portion of the sibling nodes into the elided subset based on the respective node interest characteristics such that the breadth does not exceed the constrained breadth extent.
    • 提供了一种用于重新分配对分层数据结构表示的兴趣的系统和方法。 分层数据结构的数据表示包括具有与节点兴趣特征相关联的一个或多个兄弟节点块的深度级。 两个或更多个兄弟节点被组合成聚集到被淘汰的子集中。 选择并扩展其中一个被删除的子集,以显示聚合的兄弟节点。 确定块所在的深度级别的宽度。 进一步确定宽度超过数据表示的受限广度范围。 通过根据其节点兴趣特征对深度级别的兄弟节点进行排序并基于相应的节点兴趣特征将至少一部分兄弟节点组合到消融子集中,使得广度不超过约束宽度 程度。
    • 2. 发明授权
    • Systems and methods for clustering user sessions using multi-modal information including proximal cue information
    • 使用多模式信息(包括近端提示信息)聚类用户会话的系统和方法
    • US07043475B2
    • 2006-05-09
    • US10248136
    • 2002-12-19
    • Jeffrey M. HeerEd H. Chi
    • Jeffrey M. HeerEd H. Chi
    • G06F17/30
    • G06F17/30882Y10S707/918Y10S707/99936
    • Techniques for clustering user sessions using multi-modal information including proximal cue information are provided. The topology, content and usage of a document collection or web site are determined. User paths are then identified using longest repeating subsequence techniques. An information need feature vector is determined for each significant user path. Further, other feature vectors and proximal cue vectors for each document or web page in the significant path are determined. The other feature vectors include a content feature vector, a uniform resource locator feature vector, an inlink feature vector and an outlink feature vector, among others. The feature vectors and the proximal cue vectors are combined into a multi-modal vector that represents a user profile for each significant user path. The multi-modal vectors are clustered using a type of multi-modal clustering such as K-Means or Wavefront clustering.
    • 提供了使用包括近端提示信息的多模式信息来聚类用户会话的技术。 确定文档集合或网站的拓扑,内容和用法。 然后使用最长的重复子序列技术来标识用户路径。 为每个重要用户路径确定信息需求特征向量。 此外,确定有效路径中的每个文档或网页的其他特征向量和近端提示向量。 其他特征向量包括内容特征向量,统一资源定位符特征向量,inlink特征向量和outlink特征向量等。 特征向量和近端提示向量被组合成表示每个重要用户路径的用户简档的多模态向量。 多模态向量使用一种多模式聚类(如K-Means或Wavefront聚类)进行聚类。
    • 3. 发明授权
    • System and method for redistributing interest in a hierarchical data structure representation
    • 在分层数据结构表示中重新分配兴趣的系统和方法
    • US08010575B2
    • 2011-08-30
    • US12628192
    • 2009-11-30
    • Jeffrey M. HeerStuart K. Card
    • Jeffrey M. HeerStuart K. Card
    • G06F17/30
    • G06T11/206Y10S707/99943
    • A system and method for redistributing interest in a hierarchical data structure representation is provided. A data representation of a hierarchical data structure includes depth levels having one or more blocks of sibling nodes associated with node interest characteristics. Two or more of the sibling nodes are combined as aggregates into elided subsets. One of the elided subsets is selected and expanded to reveal the aggregated sibling nodes. A breadth of the depth level in which the block is located is determined. A further determination that the breadth exceeds a constrained breadth extent for the data representation is made. The breadth is decreased by ordering the sibling nodes in the depth level by their node interest characteristic and by combining at least a portion of the sibling nodes into the elided subset based on the respective node interest characteristics such that the breadth does not exceed the constrained breadth extent.
    • 提供了一种用于重新分配对分层数据结构表示的兴趣的系统和方法。 分层数据结构的数据表示包括具有与节点兴趣特征相关联的一个或多个兄弟节点块的深度级。 两个或更多个兄弟节点被组合成聚集到被淘汰的子集中。 选择并扩展其中一个被删除的子集,以显示聚合的兄弟节点。 确定块所在的深度级别的宽度。 进一步确定宽度超过数据表示的受限广度范围。 通过根据节点兴趣特征对深度级别的兄弟节点进行排序,并且通过基于相应的节点兴趣特征将至少一部分兄弟节点组合到被消除的子集中,使广度不超过约束宽度来减小宽度 程度。
    • 4. 发明授权
    • Systems and methods for the estimation of user interest in graph theoretic structures
    • 用于估计图论理论结构中用户兴趣的系统和方法
    • US07215337B2
    • 2007-05-08
    • US10737849
    • 2003-12-18
    • Jeffrey M. HeerStuart K. Card
    • Jeffrey M. HeerStuart K. Card
    • G06T15/00
    • G06F3/0481
    • Techniques for estimating user interest in graph structures are provided. A graph structure containing at least two nodes, a threshold disinterest value and at least one interesting node within the graph structure are determined. Each determined interesting node is added to a set of active nodes. Adjacent nodes connected to the set of active nodes and associated with Degree-Of-Interest values more interesting than the threshold disinterest value are in turn added to the set of active nodes until no additional adjacent connected nodes have a Degree-Of-Interest value more interesting than the threshold value. A new visualization of the graph structure is determined based on the nodes in the set of active nodes. The interesting nodes may be determined based on specific indications of interest in a node, such as a mouse selections, or may be based on the user's focus of attention within the graph based information structure.
    • 提供了用于估计用户对图形结构的兴趣的技术。 确定包含至少两个节点,图形结构内的阈值不利值和至少一个有趣节点的图形结构。 每个确定的有趣节点被添加到一组活动节点。 连接到一组活动节点并且与阈值不感兴趣值相比更有趣的Degree-Of-Interest值的相邻节点被依次添加到该活动节点组,直到没有附加的相邻连接节点具有更高的利益度数值 有趣比阈值。 基于活动节点集合中的节点确定图形结构的新可视化。 有趣的节点可以基于诸如鼠标选择的节点中的感兴趣的特定指示来确定,或者可以基于用户在基于图的信息结构内的关注焦点。