会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Laser-welded solid electrolytic capacitor
    • 激光焊接固体电解电容器
    • US07724502B2
    • 2010-05-25
    • US11849559
    • 2007-09-04
    • Jan Petr{hacek over (z)}ílekIvan Horá{hacek over (c)}ek
    • Jan Petr{hacek over (z)}ílekIvan Horá{hacek over (c)}ek
    • H01G9/00
    • H01G9/15H01G9/0029H01G11/48H01G11/56Y02E60/13Y10T29/417
    • A solid electrolytic capacitor that is capable of withstanding laser welding without a significant deterioration in its electrical performance is provided. The capacitor contains an anode body, dielectric layer overlying the anode body, and a solid organic electrolyte layer overlying the dielectric layer. Furthermore, the capacitor of the present invention also employs a light reflective layer that overlies the solid organic electrolyte layer. The present inventors have discovered that such a light reflective layer may help reflect any light that inadvertently travels toward the capacitor element during laser welding. This results in reduced contact of the solid organic electrolyte with the laser and thus minimizes defects in the electrolyte that would have otherwise been formed by carbonization. The resultant laser-welded capacitor is therefore characterized by such performance characteristics as relatively low ESR and low leakage currents.
    • 提供能够耐受激光焊接而不显着劣化其电性能的固体电解电容器。 电容器包含阳极体,覆盖阳极体的电介质层和覆盖在电介质层上的固体有机电解质层。 此外,本发明的电容器还采用覆盖在固体有机电解质层上的光反射层。 本发明人已经发现,这种光反射层可以帮助反射在激光焊接过程中无意中向电容器元件行进的光。 这导致固体有机电解质与激光的接触减少,从而最小化由碳化造成的电解质中的缺陷。 因此,所得到的激光焊接电容器的特征在于具有相对低的ESR和低漏电流的性能特征。
    • 2. 发明授权
    • Circuit arrangement and a method for compensating changes of a transfer factor of a magnetic field sensor arrangement
    • 电路布置和用于补偿磁场传感器装置的传递因子变化的方法
    • US07224158B2
    • 2007-05-29
    • US10999198
    • 2004-11-29
    • Jan Petr
    • Jan Petr
    • G01R15/20
    • G01R33/02G01R15/207
    • The invention relates to a circuit configuration for compensating for the changes in a transfer ratio of a magnetic field sensor arrangement. According to one embodiment of the invention, a control loop for effecting this compensation is provided in the form of an integrated circuit whereby the change in transfer ratio is compensated by means of a control signal variation. This circuit configuration includes a series configuration of an A/D converter, a digital controller and a D/A converter exhibiting high precision and high control speed. A control that is significantly more precise and faster than that of the prior art is achieved by virtue of the fact that only a variable portion of regulating variables is fed through the digital controller after which a constant portion of regulating variables for the actual regulating variable used for compensation is added.
    • 本发明涉及用于补偿磁场传感器装置的传送比的变化的电路结构。 根据本发明的一个实施例,用于实现该补偿的控制回路以集成电路的形式提供,由此通过控制信号变化来补偿传送比的变化。 该电路配置包括具有高精度和高控制速度的A / D转换器,数字控制器和D / A转换器的串联配置。 通过以下事实实现比现有技术更精确和更快的控制:通过数字控制器仅供给调节变量的可变部分,之后使用用于实际调节变量的调节变量的恒定部分 补充补充。
    • 3. 发明申请
    • Circuit arrangement and a method for compensating changes of a transfer factor of a magnetic field sensor arrangement
    • 电路布置和用于补偿磁场传感器装置的传递因子变化的方法
    • US20050156588A1
    • 2005-07-21
    • US10999198
    • 2004-11-29
    • Jan Petr
    • Jan Petr
    • G01R15/20G01R33/02G01R33/00
    • G01R33/02G01R15/207
    • The invention relates to a circuit configuration for compensating for the changes in a transfer ratio of a magnetic field sensor arrangement. According to one embodiment of the invention, a control loop for effecting this compensation is provided in the form of an integrated circuit whereby the change in transfer ratio is compensated by means of a control signal variation. This circuit configuration includes a series configuration of an A/D converter, a digital controller and a D/A converter exhibiting high precision and high control speed. A control that is significantly more precise and faster than that of the prior art is achieved by virtue of the fact that only a variable portion of regulating variables is fed through the digital controller after which a constant portion of regulating variables for the actual regulating variable used for compensation is added.
    • 本发明涉及用于补偿磁场传感器装置的传送比的变化的电路结构。 根据本发明的一个实施例,用于实现该补偿的控制回路以集成电路的形式提供,由此通过控制信号变化来补偿传送比的变化。 该电路配置包括具有高精度和高控制速度的A / D转换器,数字控制器和D / A转换器的串联配置。 通过以下事实实现比现有技术更精确和更快的控制:通过数字控制器仅供给调节变量的可变部分,之后使用用于实际调节变量的调节变量的恒定部分 补充补充。
    • 4. 发明授权
    • Arrangement for measuring electrical power
    • 电力测量装置
    • US4742296A
    • 1988-05-03
    • US922124
    • 1986-10-22
    • Jan PetrRadivoje PopovicThomas Seitz
    • Jan PetrRadivoje PopovicThomas Seitz
    • G01R21/08G01R21/133H01F38/30H01F38/32
    • H01F38/30G01R21/08G01R21/133H01F38/32
    • The present invention is an arrangement for measuring electrical power. The arrangement comprises a conductor traversed by an electrical current i and a voltage-to-current converter for transforming an electrical voltage u.sub.N into a proportional supply current i.sub.N for a Hall element. The Hall element is adapted to produce an intelligence containing output signal .+-.u.sub.H proportional to the product (.+-.i.u.sub.N) of the current i and the voltage .+-.u.sub.N. The Hall element is arranged in an air-gap of a ferromagnetic core that is excited by the current i. A voltage-to-frequency converter transforms the Hall element output voltage .+-.u.sub.H into a proportional output frequency. The voltage-to-frequency converter includes a capacitor for integration purposes and at least two signal sources. The power measuring device also includes a switch for periodically switching a signal proportional to the signal .+-.u.sub.H and for switching said signal sources to compensate for an offset voltage. Use of the arrangement permits an improvement in the ratio of the intelligence containing signal to an interference signal, which interference signal includes for example an offset voltage.
    • 本发明是用于测量电力的装置。 该装置包括由电流i穿过的导体和用于将电压uN变换成用于霍尔元件的比例供应电流iN的电压 - 电流转换器。 霍尔元件适于产生包含与电流i的乘积(+/- i.uN)成正比的输出信号+/- uH和电压+/- uN的智能。 霍尔元件布置在由电流i激发的铁磁芯的气隙中。 电压 - 频率转换器将霍尔元件输出电压+/- uH转换为比例输出频率。 电压 - 频率转换器包括用于集成目的的电容器和至少两个信号源。 功率测量装置还包括用于周期性地切换与信号+/- uH成比例的信号的开关,并且用于切换所述信号源以补偿偏移电压。 使用这种布置允许改善智能包含信号与干扰信号的比例,该干扰信号包括例如偏移电压。
    • 6. 发明授权
    • Compensated transducer
    • 补偿换能器
    • US4596950A
    • 1986-06-24
    • US332215
    • 1981-12-18
    • Heinz LienhardJan Petr
    • Heinz LienhardJan Petr
    • G01R15/20G01R17/06G01R33/00G01R33/02
    • G01R17/06G01R15/205
    • A compensated measurement transducer for measuring a first current generates a first magnetic field of a predetermined direction which flows in a first circuit including a first conductor; a second current substantially similar to the first current is generated in a second circuit and the first current is measured by obtaining the value of the second current. The second circuit includes a compensating current conductor, which generates a second magnetic field, compensating the first magnetic field, a Wheatstone bridge to which both magnetic fields are applied, and an amplifier connected to the output of the Wheatstone bridge, and coupled to the compensating current conductor. An auxiliary magnetic field is applied to the Wheatstone bridge, which is connected to a current- or voltage-source, and includes four ferromagnetic and magnetoresistive thin film. The magnetic fields have a direction along the direction of the hard magnetic axes of the thin films, and the thin films are so positioned that the magnetization of two electrically oppositely disposed thin films, which results from the application of the first and second magnetic fields thereof, is rotated in a direction opposite to the correspondingly resulting magnetization of the remaining thin films, following application of the auxiliary magnetic field to the thin films.
    • 用于测量第一电流的补偿测量传感器产生在包括第一导体的第一电路中流动的预定方向的第一磁场; 在第二电路中产生与第一电流基本相似的第二电流,并且通过获得第二电流的值来测量第一电流。 第二电路包括补偿电流导体,其产生补偿第一磁场的第二磁场,施加两个磁场的惠斯登电桥,以及连接到惠斯通电桥输出的放大器,并耦合到补偿电路 电流导体。 辅助磁场被施加到连接到电流或电压源的惠斯登电桥,并且包括四个铁磁和磁阻薄膜。 磁场具有沿着薄膜的硬磁轴方向的方向,并且薄膜被定位成使得由于施加第一和第二磁场而导致的两个电相对设置的薄膜的磁化 在向辅助磁场施加辅助磁场之后,在与剩余薄膜的对应的磁化相反的方向上旋转。
    • 7. 发明授权
    • Analog to frequency convertor
    • 模数转换器
    • US4124821A
    • 1978-11-07
    • US824736
    • 1977-08-15
    • Jan Petr
    • Jan Petr
    • H03M1/60G01R19/252G01R19/255H03K7/06H03M1/00H03K13/02
    • H03M1/1014G01R19/252G01R19/255H03K7/06H03M1/506
    • An analog to frequency convertor for developing an output signal of frequency proportional to a measuring current or voltage by the charge quantity compensation method, comprising an integrator, a threshold switch downstream thereof, a compensating charge transmitter which supplies a constant compensating charge to a capacitor of the integrator each time the threshold switch responds, and a control circuit to generate a periodic digital polarity signal which controls the polarity of the measuring current or voltage and of the compensating charge transmitter and always changes its logic value at the same level of the output voltage of the integrator.
    • 一种模拟变频器,用于通过电荷量补偿方法开发与测量电流或电压成比例的频率的输出信号,包括积分器,其下游的阈值开关,补偿电荷发射器,其向 积分器每次阈值开关响应时产生周期性数字极性信号的控制电路,其控制测量电流或电压的极性以及补偿电荷发射器的极性,并且总是将其逻辑值改变为与输出电压相同的电平 的积分器。
    • 8. 发明授权
    • Compensating circuit for a magnetic field sensor
    • 磁场传感器补偿电路
    • US4752733A
    • 1988-06-21
    • US765057
    • 1985-08-12
    • Jan PetrHeinz Lienhard
    • Jan PetrHeinz Lienhard
    • G01D3/02G01D3/028G01N27/72G01R33/02G01R33/07G01R35/00H01L43/06G01R33/06
    • G01D3/021G01N27/72G01R33/02
    • A circuit which compensates for fluctuations in the transfer characteristic of a magnetic field sensor is disclosed. More particularly, an auxiliary magnetic field is generated preferably by a coil which is connected to a voltage generator by way of a voltage/current transducer. The auxiliary magnetic field along with the magnetic field to be measured is detected by the magnetic field sensor. The portion of the sensor output signal due to the auxiliary magnetic field is correlated with the voltage produced by the voltage generator by means of a correlator circuit. If the portion of the magnetic field sensor output due to the auxiliary magnetic field is not properly correlated with the signal from the voltage generator a feedback signal is sent to the magnetic field sensor to adjust the transfer characteristic.
    • 公开了补偿磁场传感器的传递特性的波动的电路。 更具体地,辅助磁场优选地由线圈产生,该线圈通过电压/电流换能器连接到电压发生器。 由磁场传感器检测辅助磁场以及要测量的磁场。 由辅助磁场引起的传感器输出信号的部分与电压发生器通过相关器电路产生的电压相关。 如果由于辅助磁场输出的磁场传感器的部分与来自电压发生器的信号不正确地相关,则将反馈信号发送到磁场传感器以调整传输特性。
    • 9. 发明授权
    • Interference signal component compensation circuit
    • 干扰信号分量补偿电路
    • US4710652A
    • 1987-12-01
    • US867490
    • 1986-05-27
    • Jan Petr
    • Jan Petr
    • G01B7/16G01B7/00G01R17/06H03F3/34H03H7/24G01R17/00H03F15/00
    • G01R17/06
    • The present invention is an electrical circuit for use with a four-pole device. The four-pole device has two input connections and two output connections. The output of the four-pole device is measured at one output relative to a base potential present at the other output.The electrical circuit comprises a two-poled switch, which is connected in such a manner, that in its first position a signal source is connected with the first input of the four-pole device and the output of an amplifier is connected with the second input of the four-pole device. In the switch's second position, the signal source is connected with the second input of the four-pole device and the output of the amplifier is connected with the first input of the four-pole device. The output of the four-pole device, which is at the base potential, is connected to an inverting input of the amplifier, while the non-inverting input of the amplifier is connected to a constant reference voltage (U.sub.R). When connected in this fashion, the amplifier serves to compensate base potential present at one output of the four-pole device.The switching arrangement serves to switch the polarity of an information containing component of the output signal of the four-pole device (which depends on the input signal source) without reversing the polarity of an interference component, which is produced within the four-pole device or which is produced in electronic components connected at the output side of the four-pole device. This may be useful for separating the information-containing and interference components in the output signal of the four-pole device.
    • 本发明是一种与四极器件一起使用的电路。 四极器件有两个输入连接和两个输出连接。 在相对于存在于另一输出端的基极电位的一个输出处测量四极器件的输出。 电路包括两极开关,其以这样的方式连接:在其第一位置,信号源与四极器件的第一输入端连接,放大器的输出与第二输入端 的四极装置。 在开关的第二位置,信号源与四极器件的第二个输入端连接,放大器的输出端与四极器件的第一个输入端相连。 处于基极电位的四极器件的输出连接到放大器的反相输入,而放大器的非反相输入端连接到恒定的参考电压(UR)。 当以这种方式连接时,放大器用于补偿存在于四极器件的一个输出处的基极电位。 开关装置用于切换四极器件的输出信号(其取决于输入信号源)的信息包含分量的极性,而不会反转在四极器件内产生的干扰分量的极性 或者是在连接在四极器件的输出侧的电子部件中产生的。 这对于在四极设备的输出信号中分离信息包含和干扰分量可能是有用的。
    • 10. 发明授权
    • Temperature compensation circuit
    • 温度补偿电路
    • US5640085A
    • 1997-06-17
    • US602178
    • 1996-02-15
    • Jan PetrErich Jeker
    • Jan PetrErich Jeker
    • G01R19/32G01R31/28
    • G01R19/32
    • A temperature compensation circuit for a power measurement device includes an input sensor, with a temperature-dependent transmission factor (K.sub.H,T), connected to a signal processor with a temperature-dependent transmission factor (K.sub.S,T). Transmission factor (K.sub.S,T) of the signal processor is inversely proportional to a temperature-dependent reference voltage (U.sub.R,N,T), which is inputted to the signal processor in order to render the combined transmission factor (K.sub.H,T .multidot.K.sub.S,T) temperature independent. To accomplish this, a temperature coefficient value of reference voltage (U.sub.R,N,T) must be equal to the sum of a temperature coefficient value of transmission factor (K.sub.H,T) and a temperature coefficient value of transmission factor (K.sub.S,T). The desired temperature coefficient value of reference voltage (U.sub.R,N,T) is predetermined, and can be programmed into the inventive temperature compensation circuit, so as to accommodate variations in temperature coefficient characteristics of the internal components.
    • 用于功率测量装置的温度补偿电路包括连接到具有温度依赖传输因子(KS,T)的信号处理器的温度依赖传输因子(KH,T)的输入传感器。 信号处理器的传输因子(KS,T)与输入到信号处理器的温度相关参考电压(UR,N,T)成反比,以便使组合传输因子(KH,TxKS,T )温度无关。 为此,参考电压(UR,N,T)的温度系数值必须等于透射系数(KH,T)的温度系数值与透射系数(KS,T)的温度系数值之和, 。 参考电压(UR,N,T)的期望温度系数值是预定的,并且可以被编程到本发明的温度补偿电路中,以便适应内部组件的温度系数特性的变化。