会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method and apparatus for context-dependent estimation of multiple
probability distributions of phonetic classes with multilayer
perceptrons in a speech recognition system
    • 用于语音识别系统中具有多层感知器的语音类的多个概率分布的上下文相关估计的方法和装置
    • US5317673A
    • 1994-05-31
    • US901716
    • 1992-06-22
    • Michael H. CohenHoracio E. Franco
    • Michael H. CohenHoracio E. Franco
    • G10L15/14G10L5/06
    • G10L15/144
    • In a hidden Markov model-based speech recognition system, multilayer perceptrons (MLPs) are used in context-dependent estimation of a plurality of state-dependent observation probability distributions of phonetic classes. Estimation is obtained by the Bayesian factorization of the observation likelihood in terms of posterior probabilities of phone classes assuming the context and the input speech vector. The context-dependent estimation is employed as the state-dependent observation probabilities needed as parameter input to a hidden Markov model speech processor to identify the word sequence representing the unknown speech input of input speech vectors. Within the speech processor, models are provided which employ the observation probabilities in the recognition process. The number of context-dependent nets is reduced to a single net by sharing the units of the input layer and the hidden layer and the weights connecting them in the multilayer perceptron while providing one output layer for each relevant context. Each output layer is trained as an independent network on the specific examples of the corresponding context it represents. Training may be optimized at an intermediate set of weights between the context-independent-associated weights and the context-dependent associated weights to which training would normally converge.
    • 在基于隐马尔可夫模型的语音识别系统中,多媒体感知器(MLP)用于语音类的多个状态依赖性观察概率分布的上下文相关估计。 通过假设上下文和输入语音向量的电话类的后验概率的观察可能性的贝叶斯分解获得估计。 采用上下文相关估计作为对隐马尔可夫模型语音处理器的参数输入所需的状态相关观测概率,以识别代表输入语音向量的未知语音输入的单词序列。 在语音处理器中,提供了在识别过程中采用观察概率的模型。 通过共享输入层和隐藏层的单位以及将它们连接到多层感知器中的权重,将上下文相关网络的数量减少到单个网络,同时为每个相关上下文提供一个输出层。 每个输出层作为独立网络被训练在其所代表的相应上下文的具体示例上。 可以在上下文无关关联权重与训练正常收敛到的与上下文相关的权重之间的中间权重集合上优化训练。
    • 6. 发明授权
    • Method of dynamically altering grammars in a memory efficient speech recognition system
    • 在存储器高效语音识别系统中动态地改变语法的方法
    • US07324945B2
    • 2008-01-29
    • US09894898
    • 2001-06-28
    • John W. ButzbergerHoracio E. FrancoLeonardo NeumeyerJing Zheng
    • John W. ButzbergerHoracio E. FrancoLeonardo NeumeyerJing Zheng
    • G10L15/18
    • G10L15/19G10L15/285
    • A method of speech recognition that uses hierarchical data structures that include a top level grammar and various related subgrammars, such as word, phone, and state subgrammars. A speech signal is acquired, and a probabilistic search is performed using the speech signal as an input, and using the (unexpanded) grammars and subgrammars as possible inputs. Memory is allocated to a subgrammar when a transition to that subgrammar is made during the probabilistic search. The subgrammar may then be expanded and evaluated, and the probability of a match between the speech signal and an element of the subgrammar for which memory has been allocated may be computed. Because unexpanded grammars and subgrammars take up very little memory, this method enables systems to recognize and process a larger vocabulary that would otherwise be possible. This method also permits grammars and subgrammars to be added, deleted, or selected by a remote computer while the speech recognition system is operating, allowing speech recognition systems to have a nearly unlimited vocabulary.
    • 一种语音识别的方法,其使用包括顶级语法和各种相关子程序的分层数据结构,例如单词,电话和状态子程序。 获取语​​音信号,并使用语音信号作为输入,并使用(未展开的)语法和子程序作为可能的输入来执行概率搜索。 在概率搜索期间过渡到该子程序时,内存被分配给子程序。 然后可以扩展和评估子程序,并且可以计算语音信号和已经分配了存储器的子程序的元素之间的匹配概率。 因为未扩展的语法和子程序占用很少的内存,所以这种方法使系统能够识别和处理否则可能的更大的词汇。 该方法还允许在语音识别系统运行时由远程计算机添加,删除或选择语法和子程序,从而允许语音识别系统具有几乎无限的词汇。
    • 7. 发明授权
    • Method and apparatus for speech recognition using a dynamic vocabulary
    • 使用动态词汇表进行语音识别的方法和装置
    • US07308404B2
    • 2007-12-11
    • US10912517
    • 2004-08-05
    • Anand VenkataramanHoracio E. FrancoDouglas A. Bercow
    • Anand VenkataramanHoracio E. FrancoDouglas A. Bercow
    • G10L15/18
    • G10L15/065G10L15/183
    • A method and apparatus are provided for performing speech recognition using a dynamic vocabulary. Results from a preliminary speech recognition pass can be used to update or refine a language model in order to improve the accuracy of search results and to simplify subsequent recognition passes. This iterative process greatly reduces the number of alternative hypotheses produced during each speech recognition pass, as well as the time required to process subsequent passes, making the speech recognition process faster, more efficient and more accurate. The iterative process is characterized by the use of results from one or more data set queries, where the keys used to query the data set, as well as the queries themselves, are constructed in a manner that produces more effective language models for use in subsequent attempts at decoding a given speech signal.
    • 提供了一种使用动态词汇表执行语音识别的方法和装置。 可以使用初步语音识别通行证的结果来更新或改进语言模型,以便提高搜索结果的准确性并简化后续识别通行证。 这种迭代过程大大减少了每个语音识别过程中产生的替代假设的数量,以及处理后续通过所需的时间,使得语音识别过程更快,更有效和更准确。 迭代过程的特征在于使用来自一个或多个数据集查询的结果,其中用于查询数据集的密钥以及查询本身以产生更有效的语言模型的方式来构造,以用于后续的 尝试解码给定的语音信号。