会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Self-position identifying method and device, and three-dimensional shape measuring method and device
    • 自定位识别方法和装置,以及三维形状测量方法和装置
    • US08121399B2
    • 2012-02-21
    • US12096830
    • 2006-12-15
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • G06K9/00G06K9/32
    • G01S17/89G01B11/24G06T7/55G06T7/75G06T7/77G06T2207/10016
    • The invention includes a step S1 for inputting into a computer coordinate values on a three-dimensional shape; a step S4 for structuring an environment model that partitions a spatial region, in which a three-dimensional shape exists, into a plurality of voxels of rectangular solids, and stores each position; and a step S5 for setting and recording a representative point and an error distribution thereof, within the voxel corresponding to the coordinate value. If there is no data in a previous measurement position, position matching is performed in a fine position matching step S7 so as to minimize an evaluation value regarding the distances between adjacent error distributions by rotating and translating a new measurement data and error distribution for the environment model for a previous measuring position, or rotating and translating an environment model for a new measuring position, relative to an environment model for a previous measuring position.
    • 本发明包括步骤S1,用于将三维形状的坐标值输入计算机; 用于构建将三维形状存在的空间区域分割成矩形固体的多个体素并存储每个位置的环境模型的步骤S4; 以及用于在与坐标值对应的体素内设置和记录代表点及其误差分布的步骤S5。 如果在先前的测量位置没有数据,则在精细位置匹配步骤S7中执行位置匹配,以通过旋转和平移新的测量数据和环境的误差分布来最小化关于相邻误差分布之间的距离的评估值 模型,或相对于先前测量位置的环境模型旋转和平移新测量位置的环境模型。
    • 2. 发明授权
    • Three-dimensional shape data position matching method and device
    • 三维形状数据位置匹配方法和装置
    • US08116558B2
    • 2012-02-14
    • US12096851
    • 2006-12-15
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • G06K9/00
    • G01S17/89G01B11/24G06T17/005
    • A three-dimensional shape data position matching method for measuring a static three-dimensional shape from a plurality of measuring positions, and for combining and position matching the distance data thereof, including: a data inputting step S1 for inputting, into a computer, coordinate values on a three-dimensional shape at a new measuring position; a model structuring step S4 for structuring an environment model that partitions a spatial region in which the three-dimensional shape exists, into a plurality of voxels formed from rectangular solids, of which the boundary surfaces are mutually perpendicular, and stores the positions of the individual voxels; a matching step S5 for setting and recording a representative point and an error distribution thereof, within the voxel corresponding to the coordinate value; a fine matching step S7 for position matching so as to minimize the summation of the distances between adjacent error distributions by rotating and translating a new measured data and error distribution, or rotating and translating an environment model for a new measuring position, relative to an environment model for a previous measuring position; and an outputting step for outputting, to an outputting device, the voxel position, the representative point, and the error distribution.
    • 一种三维形状数据位置匹配方法,用于从多个测量位置测量静态三维形状,并将其距离数据组合和位置匹配,包括:数据输入步骤S1,用于将计算机输入坐标 在新的测量位置处的三维形状的值; 用于构建将三维形状存在的空间区域分割成的环境模型的模型结构化步骤S4形成为边界面相互垂直的矩形固体形成的多个体素,并且存储个体的位置 体素 在与所述坐标值对应的体素内设置和记录代表点及其误差分布的匹配步骤S5; 用于位置匹配的精细匹配步骤S7,以通过旋转和平移新的测量数据和误差分布或相对于环境旋转和平移新测量位置的环境模型来最小化相邻误差分布之间的距离的总和 以前测量位置的模型; 以及输出步骤,向输出装置输出体素位置,代表点和误差分布。
    • 3. 发明申请
    • SELF-POSITION IDENTIFYING METHOD AND DEVICE, AND THREE-DIMENSIONAL SHAPE MEASURING METHOD AND DEVICE
    • 自定位识别方法和装置,以及三维形状测量方法和装置
    • US20090167761A1
    • 2009-07-02
    • US12096830
    • 2006-12-15
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • G06T17/00
    • G01S17/89G01B11/24G06T7/55G06T7/75G06T7/77G06T2207/10016
    • The invention includes a step S1 for inputting into a computer coordinate values on a three-dimensional shape; a step S4 for structuring an environment model that partitions a spatial region, in which a three-dimensional shape exists, into a plurality of voxels of rectangular solids, and stores each position; and a step S5 for setting and recording a representative point and an error distribution thereof, within the voxel corresponding to the coordinate value. If there is no data in a previous measurement position, position matching is performed in a fine position matching step S7 so as to minimize an evaluation value regarding the distances between adjacent error distributions by rotating and translating a new measurement data and error distribution for the environment model for a previous measuring position, or rotating and translating an environment model for a new measuring position, relative to an environment model for a previous measuring position.
    • 本发明包括步骤S1,用于将三维形状的坐标值输入计算机; 用于构建将三维形状存在的空间区域分割成矩形固体的多个体素并存储每个位置的环境模型的步骤S4; 以及用于在与坐标值对应的体素内设置和记录代表点及其误差分布的步骤S5。 如果在先前的测量位置没有数据,则在精细位置匹配步骤S7中执行位置匹配,以通过旋转和平移新的测量数据和环境的误差分布来最小化关于相邻误差分布之间的距离的评估值 模型,或相对于先前测量位置的环境模型旋转和平移新测量位置的环境模型。
    • 6. 发明申请
    • THREE-DIMENSIONAL SHAPE DATA POSITION MATCHING METHOD AND DEVICE
    • 三维形状数据位置匹配方法和装置
    • US20090202155A1
    • 2009-08-13
    • US12096851
    • 2006-12-15
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • Toshihiro HayashiYukihiro KawanoHideo Terada
    • G06K9/46
    • G01S17/89G01B11/24G06T17/005
    • A three-dimensional shape data position matching method for measuring a static three-dimensional shape from a plurality of measuring positions, and for combining and position matching the distance data thereof, including: a data inputting step S1 for inputting, into a computer, coordinate values on a three-dimensional shape at a new measuring position; a model structuring step S4 for structuring an environment model that partitions a spatial region in which the three-dimensional shape exists, into a plurality of voxels formed from rectangular solids, of which the boundary surfaces are mutually perpendicular, and stores the positions of the individual voxels; a matching step S5 for setting and recording a representative point and an error distribution thereof, within the voxel corresponding to the coordinate value; a fine matching step S7 for position matching so as to minimize the summation of the distances between adjacent error distributions by rotating and translating a new measured data and error distribution, or rotating and translating an environment model for a new measuring position, relative to an environment model for a previous measuring position; and an outputting step for outputting, to an outputting device, the voxel position, the representative point, and the error distribution.
    • 一种三维形状数据位置匹配方法,用于从多个测量位置测量静态三维形状,并将其距离数据组合和位置匹配,包括:数据输入步骤S1,用于将计算机输入坐标 在新的测量位置处的三维形状的值; 用于构建将三维形状存在的空间区域分割成的环境模型的模型结构化步骤S4形成为边界面相互垂直的矩形固体形成的多个体素,并且存储个体的位置 体素 在与所述坐标值对应的体素内设置和记录代表点及其误差分布的匹配步骤S5; 用于位置匹配的精细匹配步骤S7,以通过旋转和平移新的测量数据和误差分布或相对于环境旋转和平移新测量位置的环境模型来最小化相邻误差分布之间的距离的总和 以前测量位置的模型; 以及输出步骤,向输出装置输出体素位置,代表点和误差分布。
    • 8. 发明授权
    • Diaphragm-holding synthetic resin assembly
    • 隔膜合成树脂组件
    • US06173959B1
    • 2001-01-16
    • US08930964
    • 1997-12-19
    • Kenichi OikawaNoriaki ChibaHideo TeradaRui Matuzaka
    • Kenichi OikawaNoriaki ChibaHideo TeradaRui Matuzaka
    • F04B4302
    • F02M37/046F02M37/12F04B43/0063F05C2225/02
    • An O-ring shaped annular rib (63) is disposed around the outer periphery of a flexible diaphragm member (62), and grooves (70, 71) are formed in first and second resin members (60, 61) for receiving the annular rib (63) in the compressed state. A hollow space is defined between the first and second members (60) for holding the diaphragm (62) in the clamped state. A contact surface (64) where the first and second synthetic resin members (60, 61) come into contact with each other, is located outward of the grooves (70, 71), and is subjected to welding with a supersonic welding tool (65). A gap (76) is formed between the first synthetic resin member (60) and the supersonic welding tool (65), which gap disappears as the welding progresses. At this time, further progress of the welding operation is inhibited by allowing the first synthetic resin member (60) and the supersonic welding tool (65) to provide a predetermined compression for the annular rib (63). Alternatively, a metallic spacer (77) is interposed between the first synthetic resin member (60) and the second synthetic resin member 61 with a gap (78) between the second synthetic resin member (61) and the metallic spacer (77) prior to a welding operation, which gap (78) disappears as the welding operation progresses, until further progress of the welding operation is halted.
    • 在柔性隔膜构件(62)的外周周围设置有O形环状的环状肋(63),在第一和第二树脂构件(60,61)上形成有用于容纳环状肋 (63)处于压缩状态。 在第一和第二构件(60)之间限定用于将隔膜(62)保持在夹紧状态的中空空间。 第一和第二合成树脂构件(60,61)彼此接触的接触表面(64)位于凹槽(70,71)的外侧,并且用超音速焊接工具(65 )。 在第一合成树脂构件(60)和超声波焊接工具(65)之间形成间隙(76),该间隙随焊接进行而消失。 此时,通过允许第一合成树脂构件(60)和超音速焊接工具(65)为环形肋(63)提供预定的压缩来抑制焊接操作的进一步的进展。 或者,在第一合成树脂构件(60)和第二合成树脂构件61之间,在第二合成树脂构件(61)和金属间隔件(77)之间具有间隙(78)的金属间隔件(77)之前, 焊接操作,当焊接操作进行时该间隙(78)消失,直到焊接操作的进一步进行停止。