会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Co-axial time-of-flight mass spectrometer
    • 同轴飞行时间质谱仪
    • US08952325B2
    • 2015-02-10
    • US12518240
    • 2007-12-07
    • Roger GilesMichael SudakovHermann Wollnik
    • Roger GilesMichael SudakovHermann Wollnik
    • H01J49/00H01J49/40
    • H01J49/406
    • A co-axial time-of-flight mass spectrometer having a longitudinal axis and first and second ion mirrors at opposite ends of the longitudinal axis. Ions enter the spectrometer along an input trajectory offset from the longitudinal axis and after one or more passes between the mirrors ions leave along an output trajectory offset from the longitudinal axis for detection by an ion detector. The input and output trajectories are offset from the longitudinal axis by an angle no greater than formula (I): where Dmin is the or the minimum transverse dimension of the ion mirror and L is the distance between the entrances of the ion mirrors.
    • 具有纵向轴线的同轴飞行时间质谱仪和在纵向轴线的相对端处的第一和第二离子反射镜。 离子沿着从纵向轴线偏移的输入轨迹进入光谱仪,并且在镜子之间的一个或多个通过之后,离子离开离开纵向轴线的输出轨迹离开以便由离子检测器检测。 输入和输出轨迹从纵轴偏移一个不大于公式(I)的角度:其中Dmin是离子镜的最小横向尺寸,L是离子镜入口之间的距离。
    • 4. 发明授权
    • Arrangement and process for adjusting imaging systems
    • 调整成像系统的布置和过程
    • US4486664A
    • 1984-12-04
    • US401614
    • 1982-07-26
    • Hermann Wollnik
    • Hermann Wollnik
    • G21K1/087H01J37/147H01J49/04B01D59/44H01J35/00
    • H01J49/061G21K1/087H01J37/1471
    • An arrangement and a process for adjusting imaging systems for bundles of charged particles, or for adjusting spectrometers for bundles of charged particles, are indicated, in which arrangement and process electric and/or magnetic correcting elements are used, which possess, in every case, a large number of electrodes and/or current conductors, which are arranged, symmetrically or asymmetrically, around the optical axis of the particle bundle, these electrodes being at potentials such that the resulting potentials V (r, .PHI.) at an azimuth angle (.PHI.) to a cylindrical surface at a radius (r) around an optical axis (Z) can be represented as the sum of V.sub.1 and V.sub.2, or, as the case may be, these current conductors carrying currents such that the magnitudes of the resulting currents I (r, .PHI.) at the azimuth angle (.PHI.), as defined above, can be represented as the sum of I.sub.1 and I.sub.2. The expressions V.sub.1, V.sub.2 and I.sub.1, I.sub.2 can, in their turn, be represented as sums, their addends being, respectively, of the type V.sub.1 =V.sub.1k sink.PHI., V.sub.2 =V.sub.2k cosk.PHI., and I.sub.1 =I.sub.1k sink.PHI. and I.sub.2 =I.sub.2k cosk.PHI., where k=1, 2, . . . P, with P representing the order of the multipole. The potentials and/or the currents are utilized, in this manner, to obtain superpositions of electric and/or magnetic dipoles, quadrupoles, hexapoles, etc.
    • 示出了用于调整带电粒子束成像系统或用于调节带电粒子束束的光谱仪的装置和方法,其中使用了布置和处理电和/或磁校正元件,其在每种情况下都具有, 围绕颗粒束的光轴布置,对称或不对称地布置的大量电极和/或电流导体,这些电极处于电位,使得所得到的电位V(r,PHI)在方位角(PHI )到围绕光轴(Z)的半径(r)处的圆柱形表面可以表示为V1和V2的总和,或者视情况而定,这些电流导体承载电流,使得所得到的电流的大小 如上定义的方位角(PHI)下的I(r,PHI)可以表示为I1和I2的和。 表达式V1,V2和I1,I2又可以表示为和,它们的加数分别为V1 = V1ksink PHI,V2 = V2kcosk PHI,I1 = I1ksink PHI,I2 = I2kcosk PHI, 其中k = 1,2。 。 。 P,P代表多极的顺序。 以这种方式利用电势和/或电流来获得电和/或磁偶极子,四极体,六极体等的叠加。
    • 5. 发明申请
    • CURTAIN GAS FILTER FOR HIGH-FLUX ION SOURCES
    • 用于高通量离子源的过滤气体过滤器
    • US20130140456A1
    • 2013-06-06
    • US13816136
    • 2010-08-10
    • Hermann Wollnik
    • Hermann Wollnik
    • H01J49/04
    • H01J49/0422G01N27/624H01J49/0445
    • A curtain-gas filter for a mass- or mobility-spectrometer that bars gases or vapors of a high-flux atmospheric pressure ion source, as we ions of high mobility and charged droplets, from entering an evacuated mass spectrometer or a mobility spectrometer that is at a lower pressure than the main filter volume of the curtain-gas filter. A portion of the ion-source buffer gas in the ion-source plume is sucked through an ion-source buffer gas inlet into the main filter volume of the curtain-gas filter, from where this ion-source gas is exhausted after a properly shaped electric field has pushed a large portion of the embedded ions into an externally provided stream of a clean buffer gas, which is sucked through a passage into a mass- or mobility-spectrometer that is at a lower pressure.
    • 用于大规模或迁移率光谱仪的帘式气体过滤器,其将高通量大气压离子源的气体或蒸气截留,因为高迁移率和带电液滴的离子进入抽真空的质谱仪或迁移谱仪 在低于帘式气体过滤器的主过滤器体积的压力下。 离子源羽流中的一部分离子源缓冲气体通过离子源缓冲气体入口被吸入到幕式气体过滤器的主过滤器体积中,从该离子源缓冲气体中排出适当的形状 电场将大部分嵌入式离子推入干净的缓冲气体的外部提供的流中,该干净的缓冲气体通过通道被吸入到处于较低压力的质谱仪或移动光谱仪中。
    • 6. 发明授权
    • Charged-particle condensing device
    • 带电粒子的冷凝装置
    • US08013296B2
    • 2011-09-06
    • US12600741
    • 2007-05-21
    • Hermann WollnikYoshihiro Ueno
    • Hermann WollnikYoshihiro Ueno
    • H01J49/04H01J49/06
    • H01J49/067
    • Ions and charged droplets move from the nozzle (6) towards the orifice (22) of a charged-particle transport device or the desolvation pipe (7). This particle motion is governed by the distribution of the pseudo-potential along particle trajectories. There are RF-voltages applied to neighboring electrodes (241-246) of the electrode array (24) cause the charged particles to substantially hover above the electrode array (24). Right before the ions come to the electrode array (24) they thus experience a repelling force “F” perpendicular to the surface of the electrode array (24). This force “F” causes an effective barrier (B) right before the electrode array (24) and consequently a pseudo-potential well (A) where the charged particles stop their motion parallel to the plume axis (D). Thus they accumulate around the center line (C) of this well (A). Applying additionally to the RF-potentials also DC-potentials to neighboring electrodes within the electrode array (24) small DC-fields can be formed within the well area (23). These additional DC-fields drive the charged particles towards the axis of symmetry (C) and thus towards the orifice (22) of a charged-particle transport device or the desolvation pipe (7). Thus, many of the charged particles which would normally impinge on the wall (21) around the orifice (22) can now be analyzed.
    • 离子和带电液滴从喷嘴(6)移动到带电粒子输送装置或去溶剂化管(7)的孔口(22)。 该粒子运动由沿着粒子轨迹的伪电位的分布决定。 施加到电极阵列(24)的相邻电极(241-246)的RF电压使得带电粒子基本上悬浮在电极阵列(24)上方。 在离子进入电极阵列(24)之前,它们因此经历与电极阵列(24)的表面垂直的排斥力“F”。 该力“F”在电极阵列(24)之前产生有效屏障(B),并因此导致带电粒子停止其平行于羽流轴线(D)的运动的伪势阱(A)。 因此,它们在该井(A)的中心线(C)周围积聚。 另外施加RF电位也可以在电极阵列(24)内的相邻电极的DC电位,可以在阱区(23)内形成小的DC场。 这些附加的直流磁场将驱动带电粒子朝向对称轴线(C),从而驱动带电粒子输送装置或去溶剂化管道(7)的孔口(22)。 因此,现在可以分析许多通常会撞击孔(22)周围的壁(21)上的带电粒子。
    • 7. 发明授权
    • “Droplet pickup ion source” coupled to mobility analyzer apparatus and method
    • “液滴拾取离子源”耦合到移动分析仪装置和方法
    • US07772548B2
    • 2010-08-10
    • US12118763
    • 2008-05-12
    • Hermann Wollnik
    • Hermann Wollnik
    • B01D59/44
    • H01J49/165G01N27/622H01J49/145
    • An ion mobility analyzer includes at least one of a “differential mobility analyzer”, an “ion mobility spectrometer” and a “differential mobility spectrometer”, to which charged molecules of interest are fed. Ions are fed to the ion mobility analyzer from a “droplet pickup ion source” including an electrospray ion source at a capillary end, from which charged droplets formed from a solvent mixture having substantially none of the molecules of interest emerge. The charged droplets are pulled by an electric field into a “pickup region” filled with a buffer gas at a pressure or a region close to the surface of a sample, where the charged droplets incorporate the molecules of interest and transfer the charge of the charged droplets to the molecules of interest, when the liquid in the charged droplets has evaporated in a heated desolvation region that is separate or integral with respect to the “pickup region”.
    • 离子迁移率分析仪包括进料感兴趣的分子的“差分迁移率分析仪”,“离子迁移谱仪”和“差分迁移谱仪”中的至少一个。 从包括毛细管端的电喷雾离子源的“液滴拾取离子源”将离子进料到离子迁移率分析器,从基本上没有感兴趣的分子出现的溶剂混合物形成带电的液滴。 带电液滴被电场拉入到充满缓冲气体的压力或接近样品表面的区域的“拾取区域”中,其中带电液滴包含感兴趣的分子并转移带电的电荷 当带电液滴中的液体在相对于“拾取区域”分离或积分的加热的去溶剂化区域中蒸发时,液滴到感兴趣的分子。
    • 9. 发明授权
    • Process and arrangement for registration of ion-, electron- and
light-spectra
    • 离子,电子和光谱注册的过程和布置
    • US4164652A
    • 1979-08-14
    • US922696
    • 1978-07-07
    • Hermann Wollnik
    • Hermann Wollnik
    • G01J3/28B01D59/44
    • G01J3/28
    • An improved process and an arrangement for the registration of ion-, electron- or light-spectra are described. The spectrum is guided continuously or in very small steps past an N-channel detector. After or during the time in which the spectrum shifts, all N-channels are read out. The N-channel information is added to the information in N corresponding digital or analog storage elements. Simultaneously to the shift of the spectrum past the N-channel detector or, subsequently, the information in the N storage elements are shifted one position. Thus, during the next cycle of detection, read out and addition, the information detected corresponding to a specific part of the spectrum is being added to information obtained in prior cycles from the same part of the spectrum. If this process is repeated as long as the continuous shifting of the spectrum lasts, an intensity will be registered successively in all N-channels, and then summed in the storage, corresponding to that which would be obtained if the spectrum was shifted past a gap of the width of a single channel. This sum increases at each shifting process until after N shifting the sum in an outlet register finally corresponds to the intensity integrated over N measuring cycles. Reading out the outlet register corresponds for the further data processing precisely to that of a single outlet gap so that existing data processing systems for particle or light spectrometers do not require modification for use in case of the improved registering arrangement.
    • 描述了用于离子,电子或光谱的配准的改进方法和布置。 频谱是通过N通道检测器连续或非常小的步骤引导的。 在频谱移动之后或之后,读出所有N个通道。 N信道信息被添加到N个对应的数字或模拟存储元件中的信息中。 在通过N通道检测器的频谱移动的同时,或者N个存储元件中的信息被移动一个位置。 因此,在下一周期的检测,读出和添加期间,将与频谱的特定部分相对应的检测信息加到从频谱的同一部分的先前循环中获得的信息中。 如果这个过程重复,只要光谱的连续移动持续,强度将在所有N个信道中连续登记,然后在存储器中求和,对应于如果频谱偏移超过间隙将获得的 单个通道的宽度。 这个总和在每个移位过程中增加,直到N移位出口寄存器中的和最终对应于在N个测量循环中积分的强度。 读出出口寄存器对应于进一步的数据处理精确地与单个出口间隙的数据处理相对应,使得用于粒子或光谱仪的现有数据处理系统不需要修改以在改进的配准布置的情况下使用。