会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Solar simulator and method
    • 太阳能模拟器和方法
    • US4423469A
    • 1983-12-27
    • US285493
    • 1981-07-21
    • Gene A. ZerlautWilliam T. DokosWilliam J. PutmanRussell K. Skousen
    • Gene A. ZerlautWilliam T. DokosWilliam J. PutmanRussell K. Skousen
    • F21S8/00F24J2/46F21V9/02
    • F24J2/4607F21S8/006F21V21/30Y02E10/40
    • A solar simulator includes a lamp array of solar lamps pivotally connected to an array frame. The array frame is rotatably and pivotally mounted on a gantry crane, the elevation and lateral position of which are adjustable relative to the position of a solar collector to be tested. The solar simulator maintains the plane of the lamp array parallel to the plane of the test device for all elevations, lateral positions and rotational positions of the lamp array, and controls tilting of the lamps relative to the array frame to any desired angle of incidence. The solar simulator is operated to control the angle of incidence of radiation received by the solar collector to be tested and to vary the distance from the array of lamps to the solar collector in such a manner that the intensity of received radiation along the surface of the test device is uniform, thereby avoiding undesirable lateral gradients in temperature along the surface of the test device. The solar simulator allows accurate simulation of a solar day without reducing the power to solar lamps, to avoid undesirable variation in the spectrum of radiation produced by the solar simulator. A test stand holding the solar collector includes a movable horizontal bar supporting a plurality of uniformly spaced radiation intensity sensors. The bar is vertically moved, enabling the radiation intensity profile along the entire surface of the solar collector to be accurately and repeatably measured.
    • 太阳能模拟器包括可枢转地连接到阵列框架的太阳能灯阵列。 阵列框架可旋转并可枢转地安装在龙门起重机上,其高度和横向位置相对于待测试的太阳能收集器的位置是可调节的。 太阳能模拟器将灯阵列的平面保持在与灯阵列的所有高程,横向位置和旋转位置平行的测试装置的平面上,并且将灯相对于阵列框架的倾斜控制到任何所需的入射角。 操作太阳模拟器以控制待测试的太阳能收集器接收的辐射的入射角,并且以这样的方式改变从阵列阵列到太阳能收集器的距离,使得沿着表面的接收辐射的强度 测试装置是均匀的,从而避免沿着测试装置的表面的不期望的温度梯度。 太阳能模拟器允许对太阳能日的精确模拟,而不降低太阳能灯的功率,以避免由太阳模拟器产生的辐射光谱的不期望的变化。 保持太阳能收集器的测试台包括支撑多个均匀间隔的辐射强度传感器的可移动水平杆。 杆被垂直移动,使得能够准确地和重复地测量沿着太阳能收集器的整个表面的辐射强度分布。
    • 2. 发明授权
    • Method and apparatus for determining spectral response and spectral
response mismatch between photovoltaic devices
    • 用于确定光伏器件之间的光谱响应和光谱响应失配的方法和装置
    • US4467438A
    • 1984-08-21
    • US340038
    • 1982-01-18
    • Gene A. ZerlautRichard D. WhitakerArthur W. Purnell
    • Gene A. ZerlautRichard D. WhitakerArthur W. Purnell
    • G01R31/26G06F15/20
    • G01R31/2635H02S50/10Y10S136/29
    • An apparatus including a white light and first, second, and third filters through which the white light is transmitted is utilized to sequentially irradiate a solar cell. The light impinging upon the solar cell from the first, second, and third filters has first, second, and third "tristimulus" distributions. The resulting first, second, and third electrical output quantities produced by the solar cell are measured and utilized to compute normalized spectral response coefficients by normalizing each of the electrical output quantities with respect to the sum of the three. First, second, and third response differences are obtained by subtracting the first, second, and third response coefficients from first, second and third response coefficients previously obtained from a reference solar cell. A spectral response mismatch coefficient equal to the square root of the squares of the three response differences is computed and utilized as a measure of the spectral response mismatch between the solar cell and the reference solar cell. On the basis of such computed spectral response mismatch coefficients, solar cells are grouped in ranges that are sufficiently closely matched to be optimally interconnected in individual solar modules. The technique can also be utilized to determine the spectral response of photovoltaic modules in terms of a tristimulus distribution, and the mismatch coefficient between the module and a solar cell and/or another module.
    • 使用包括白光的装置和透射白光的第一,第二和第三滤光器来依次照射太阳能电池。 从第一,第二和第三滤光器照射到太阳能电池上的光具有第一,第二和第三“三刺激”分布。 由太阳能电池产生的所得到的第一,第二和第三电输出量被测量并用于通过相对于三者的总和归一化每个电输出量来计算归一化的光谱响应系数。 通过从先前从参考太阳能电池获得的第一,第二和第三响应系数中减去第一,第二和第三响应系数来获得第一,第二和第三响应差。 计算等于三个响应差的平方根的光谱响应失配系数,并将其用作太阳能电池和参考太阳能电池之间的光谱响应失配的度量。 基于这种计算的光谱响应失配系数,将太阳能电池分组在足够紧密匹配的范围内,以在各个太阳能模块中最佳地相互连接。 该技术还可用于根据三色分布来确定光伏模块的光谱响应,以及模块与太阳能电池和/或另一模块之间的失配系数。
    • 3. 发明授权
    • Solar tracking device
    • 太阳能追踪装置
    • US4031385A
    • 1977-06-21
    • US673484
    • 1976-04-05
    • Gene A. ZerlautRobert F. Heiskell
    • Gene A. ZerlautRobert F. Heiskell
    • G01S3/786G01J1/20
    • G01S3/7861Y10S136/291
    • A solar tracking system is disclosed, utilizing a photovoltaic device, for following the changing solar position. When the sun ceases to be the brightest object in the sky, such as during periods of partial cloud cover, and the system seeks to acquire the brightest spot in preference to the sun, the photovoltaic device is automatically overridden. The override system is clock-driven and moves the tracking system to approximate the solar position so that the sun can be immediately reacquired by the photovoltaic device when the sun re-energizes as the brightest object in the sky.
    • 公开了利用光伏器件来跟踪太阳位置变化的太阳跟踪系统。 当太阳停止成为天空中最亮的物体时,例如在部分云层期间,系统寻求获取最适合太阳的最亮点,光伏装置将被自动覆盖。 超控系统是时钟驱动的,并且使跟踪系统移动到近似太阳位置,使得当太阳重新激发作为天空中最亮的物体时,太阳可以被光伏装置立即重新获得。