会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CATEGORIZER WITH USER-CONTROLLABLE CALIBRATION
    • 具有用户可控校准的分类器
    • US20100014762A1
    • 2010-01-21
    • US12174721
    • 2008-07-17
    • Jean-Michel RendersCaroline PrivaultEric H. Cheminot
    • Jean-Michel RendersCaroline PrivaultEric H. Cheminot
    • G06K9/62
    • G06K9/6277
    • A calibrated categorizer comprises: a multi-class categorizer configured to output class probabilities for an input object corresponding to a set of classes; a class probabilities rescaler configured to rescale class probabilities to generate rescaled class probabilities; and a resealing model learner configured to learn calibration parameters for the class probabilities rescaler based on (i) class probabilities output by the multi-class categorizer for a calibration set of class-labeled objects, (ii) confidence measures output by the multi-class categorizer for the calibration set of class-labeled objects, and (iii) class labels of the calibration set of class-labeled objects, the class probabilities rescaler calibrated by the learned calibration parameters defining a calibrated class probabilities rescaler. In a method embodiment, class probabilities are generated for an input object corresponding to a set of classes using a classifier trained on a first set of objects, and are rescaled to form rescaled class probabilities using a resealing algorithm calibrated using a second set of objects different from the first set of objects. The method may further entail thresholding the rescaled class probabilities using thresholds calibrated using the second set of objects or a third set of objects.
    • 校准分类器包括:多类分类器,被配置为输出与一组类对应的输入对象的类概率; 类概率重定标器被配置为重新缩放类概率以产生重新缩放的类概率; 以及重新密封的模型学习者,被配置为基于(i)由多类分类器输出的用于类标记对象的校准集的类概率来学习类概率重定标器的校准参数,(ii)由多类输出的置信度度量 分类器,用于类标记对象的校准集,以及(iii)类标记对象的校准集的类标签,通过定义校准的类概率重定标器的所学习的校准参数校准的类概率重新计数器。 在方法实施例中,针对与使用在第一组对象上训练的分类器相对应的类的集合的输入对象生成类概率,并且使用使用不同对象的第二组对象校准的重新密码算法重新缩放以形成重新缩放的类概率 从第一组对象。 该方法还可能使用使用第二组对象或第三组对象校准的阈值来限定重新归类的类概率。
    • 4. 发明申请
    • METHOD FOR ONE-STEP DOCUMENT CATEGORIZATION AND SEPARATION
    • 一步文件分类和分离方法
    • US20110192894A1
    • 2011-08-11
    • US12702897
    • 2010-02-09
    • Francois RagnetJohn A. MooreNicolas Raphaël SaubatEric H. CheminotThierry Lehoux
    • Francois RagnetJohn A. MooreNicolas Raphaël SaubatEric H. CheminotThierry Lehoux
    • G06F17/00G06K7/00G09F3/00
    • G06F17/30563G06F17/30011
    • A method, apparatus, and hardcopy document are provided. The method provides for separating and categorizing documents and includes receiving a scanned batch of documents. The batch includes a plurality of scanned documents to which document separator stamps have been applied before scanning. Each document separator stamp includes first and second machine recognizable patterns applied on a same page of a document, the first and second patterns being spaced by a designated field for receiving a user-applied category code. The scanned batch of documents is processed to identify pages that contain a document separator, the processing including identifying at least one of the first and second spaced patterns. For each of a plurality of document pages for which a document separator is identified, the method includes locating the corresponding designated field and identifying the category code associated with the designated field. The document containing the identified separator is separated from other documents in the batch based on at least the identified separator and a document category is assigned to the document from a set of document categories, based on the identified category code.
    • 提供了一种方法,设备和硬拷贝文档。 该方法用于分离和分类文档,并包括接收扫描的文件批次。 批次包括在扫描之前已经应用了文档分离器标记的多个扫描文档。 每个文档分隔符包括应用于文档的同一页面上的第一和第二机器可识别图案,第一和第二图案间隔有用于接收用户应用类别代码的指定字段。 处理扫描的文档批次以识别包含文档分隔符的页面,该处理包括识别第一和第二间隔图案中的至少一个。 对于识别出文档分离器的多个文档页面中的每一个,该方法包括定位相应的指定字段并且识别与指定字段相关联的类别代码。 基于所识别的类别代码,至少基于所标识的分离器将包含所识别的分离符的文档与批处理中的其他文档分开,并且从文档类别集合将文档类别分配给文档。
    • 5. 发明授权
    • Optical mark classification system and method
    • 光标分类系统及方法
    • US08600165B2
    • 2013-12-03
    • US12704792
    • 2010-02-12
    • Nicolas Raphaël SaubatFrancois RagnetPhilippe ReroleEric H. CheminotJohn A. Moore
    • Nicolas Raphaël SaubatFrancois RagnetPhilippe ReroleEric H. CheminotJohn A. Moore
    • G06K9/46G06K9/00G06K7/10
    • G06K9/3233G06K9/2063G06K2209/01
    • A system, method, and apparatus for mark recognition in an image of an original document are provided. The method/system takes as input an image of an original document in which at least one designated field is provided for accepting a mark applied by a user (which may or may not have been marked). A region of interest (RoI) is extracted from the image, roughly corresponding to the designated field. A center of gravity (CoG) of the RoI is determined, based on a distribution of black pixels in the RoI. Thereafter, for one or more iterations, the RoI is partitioned into sub-RoIs, based on the determined CoG, where at a subsequent iteration, sub-RoIs generated at the prior iteration serve as the RoI partitioned. Data is extracted from the RoI and sub-RoIs at one or more of the iterations, which allows a representation of the entire RoI to be generated which is useful in classifying the designated field, e.g., as positive (marked) or negative (not marked).
    • 提供了一种用于原始文档的图像中的标记识别的系统,方法和装置。 该方法/系统将原始文档的图像作为输入,其中提供至少一个指定字段用于接受用户应用的标记(其可以被标记或可能不被标记)。 从图像中提取感兴趣区域(RoI),大致对应于指定字段。 基于RoI中的黑色像素的分布,确定RoI的重心(CoG)。 此后,对于一次或多次迭代,基于所确定的CoG将RoI划分为子路由,其中​​在随后的迭代中,在先前迭代中生成的子路由用作RoI分区。 在一次或多次迭代中,从RoI和Sub-RoI中提取数据,这允许生成对整个指定字段进行分类的整个RoI的表示,例如作为正(标记)或否定(未标记) )。
    • 7. 发明授权
    • Categorizer with user-controllable calibration
    • 具有用户可控校准的分类器
    • US08189930B2
    • 2012-05-29
    • US12174721
    • 2008-07-17
    • Jean-Michel RendersCaroline PrivaultEric H. Cheminot
    • Jean-Michel RendersCaroline PrivaultEric H. Cheminot
    • G06K9/74G06K9/62
    • G06K9/6277
    • A calibrated categorizer comprises: a multi-class categorizer configured to output class probabilities for an input object corresponding to a set of classes; a class probabilities rescaler configured to rescale class probabilities to generate rescaled class probabilities; and a resealing model learner configured to learn calibration parameters for the class probabilities rescaler based on (i) class probabilities output by the multi-class categorizer for a calibration set of class-labeled objects, (ii) confidence measures output by the multi-class categorizer for the calibration set of class-labeled objects, and (iii) class labels of the calibration set of class-labeled objects, the class probabilities rescaler calibrated by the learned calibration parameters defining a calibrated class probabilities rescaler. In a method embodiment, class probabilities are generated for an input object corresponding to a set of classes using a classifier trained on a first set of objects, and are rescaled to form rescaled class probabilities using a resealing algorithm calibrated using a second set of objects different from the first set of objects. The method may further entail thresholding the rescaled class probabilities using thresholds calibrated using the second set of objects or a third set of objects.
    • 校准分类器包括:多类分类器,被配置为输出与一组类对应的输入对象的类概率; 类概率重定标器被配置为重新缩放类概率以产生重新缩放的类概率; 以及重新密封的模型学习者,其被配置为基于(i)由多类分类器输出的用于类标记对象的校准集的类概率来学习类概率重定标器的校准参数,(ii)由多类输出的置信度度量 分类器,用于类标记对象的校准集,以及(iii)类标记对象的校准集的类标签,通过定义校准的类概率重定标器的所学习的校准参数校准的类概率重新计数器。 在方法实施例中,针对与使用在第一组对象上训练的分类器相对应的类的集合的输入对象生成类概率,并且使用使用不同对象的第二组对象校准的重新密码算法重新缩放以形成重新缩放的类概率 从第一组对象。 该方法还可能使用使用第二组对象或第三组对象校准的阈值来限定重新归类的类概率。
    • 9. 发明申请
    • OPTICAL MARK CLASSIFICATION SYSTEM AND METHOD
    • 光学标记分类系统和方法
    • US20110200256A1
    • 2011-08-18
    • US12704792
    • 2010-02-12
    • Nicolas Raphael SaubatFrancois RagnetPhilippe ReroleEric H. CheminotJohn A. Moore
    • Nicolas Raphael SaubatFrancois RagnetPhilippe ReroleEric H. CheminotJohn A. Moore
    • G06K9/46
    • G06K9/3233G06K9/2063G06K2209/01
    • A system, method, and apparatus for mark recognition in an image of an original document are provided. The method/system takes as input an image of an original document in which at least one designated field is provided for accepting a mark applied by a user (which may or may not have been marked). A region of interest (RoI) is extracted from the image, roughly corresponding to the designated field. A center of gravity (CoG) of the RoI is determined, based on a distribution of black pixels in the RoI. Thereafter, for one or more iterations, the RoI is partitioned into sub-RoIs, based on the determined CoG, where at a subsequent iteration, sub-RoIs generated at the prior iteration serve as the RoI partitioned. Data is extracted from the RoI and sub-RoIs at one or more of the iterations, which allows a representation of the entire RoI to be generated which is useful in classifying the designated field, e.g., as positive (marked) or negative (not marked).
    • 提供了一种用于原始文档的图像中的标记识别的系统,方法和装置。 该方法/系统将原始文档的图像作为输入,其中提供至少一个指定字段用于接受用户应用的标记(其可以被标记或可能不被标记)。 从图像中提取感兴趣区域(RoI),大致对应于指定字段。 基于RoI中的黑色像素的分布,确定RoI的重心(CoG)。 此后,对于一次或多次迭代,基于所确定的CoG将RoI划分为子路由,其中​​在随后的迭代中,在先前迭代中生成的子路由用作RoI分区。 在一次或多次迭代中,从RoI和Sub-RoI中提取数据,这允许生成对整个指定字段进行分类的整个RoI的表示,例如作为正(标记)或否定(未标记) )。