会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Method for Pan-Sharpening Panchromatic and Multispectral Images Using Wavelet Dictionaries
    • 使用小波字典泛化全色和多光谱图像的方法
    • US20130129201A1
    • 2013-05-23
    • US13478510
    • 2012-05-23
    • Dehong LiuPetros T. Boufounos
    • Dehong LiuPetros T. Boufounos
    • G06K9/62
    • G06K9/6219G06T5/003G06T5/50G06T2207/10036G06T2207/10041
    • A method Pan-sharpens a single panchromatic (Pan) image and a single multispectral (MS) image. A wavelet transform is applied to the Pan image and the MS image to obtain a wavelet transformed Pan image and a wavelet transformed MS image. Features, in the form of vectors, are extracted from the wavelet transformed Pan image and the wavelet transformed MS image. The features are separated into features without missing values and features with missing values. A dictionary is learned from features without missing values and used to predict the values for the features with the missing values. After the predicting, the features of the low frequency wavelet coefficients and the high frequency coefficients to form a fused wavelet coefficient map, and an inverse wavelet transform is applied to the fused wavelet coefficient map to obtain a fused MS image.
    • 一种方法Pan-Sharpens单个全色(Pan)图像和单个多光谱(MS)图像。 将小波变换应用于Pan图像和MS图像,以获得小波变换的Pan图像和小波变换的MS图像。 从小波变换的Pan图像和小波变换的MS图像中提取以向量的形式的特征。 功能分为特征,而不缺少值和缺失值的特征。 从没有缺失值的特征中学习字典,并用于预测具有缺失值的要素的值。 在预测之后,将低频小波系数和高频系数的特征形成融合小波系数图,并将小波变换应用于融合小波系数图,以获得融合的MS图像。
    • 4. 发明授权
    • Method for pan-sharpening panchromatic and multispectral images using wavelet dictionaries
    • 使用小波字典泛化全色和多光谱图像的方法
    • US08699790B2
    • 2014-04-15
    • US13478510
    • 2012-05-23
    • Dehong LiuPetros T. Boufounos
    • Dehong LiuPetros T. Boufounos
    • G06K9/00
    • G06K9/6219G06T5/003G06T5/50G06T2207/10036G06T2207/10041
    • A method Pan-sharpens a single panchromatic (Pan) image and a single multispectral (MS) image. A wavelet transform is applied to the Pan image and the MS image to obtain a wavelet transformed Pan image and a wavelet transformed MS image. Features, in the form of vectors, are extracted from the wavelet transformed Pan image and the wavelet transformed MS image. The features are separated into features without missing values and features with missing values. A dictionary is learned from features without missing values and used to predict the values for the features with the missing values. After the predicting, the features of the low frequency wavelet coefficients and the high frequency coefficients to form a fused wavelet coefficient map, and an inverse wavelet transform is applied to the fused wavelet coefficient map to obtain a fused MS image.
    • 一种方法Pan-sharpens单个全色(Pan)图像和单个多光谱(MS)图像。 将小波变换应用于平移图像和MS图像,以获得小波变换的Pan图像和小波变换的MS图像。 从小波变换的Pan图像和小波变换的MS图像中提取以向量的形式的特征。 功能分为特征,而不缺少值和缺失值的特征。 从没有缺失值的特征中学习字典,并用于预测具有缺失值的要素的值。 在预测之后,将低频小波系数和高频系数的特征形成融合小波系数图,并将小波变换应用于融合小波系数图,以获得融合的MS图像。