会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Automated grouping of messages provided to an application using execution path similarity analysis
    • 使用执行路径相似性分析自动分组提供给应用程序的消息
    • US07917911B2
    • 2011-03-29
    • US11565723
    • 2006-12-01
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • G06F15/163
    • G06F11/3612G06F11/3409G06F11/3447G06F2201/87G06F2201/875
    • An application is monitored to identify different execution paths, e.g., sequences of invoked components, which occur due to the receipt of messages by the application. Similarities between the execution paths are determined based on a distance algorithm, in one approach, and execution paths which are similar are assigned to a common group. Additionally, application runtime data such as response times is obtained for the execution paths and aggregated for the group. The messages can also be grouped based on the grouping of the execution paths. Further, a representative execution path can be determined for each execution path group for comparison to subsequent execution paths. A representative message can similarly be determined for each message group. Results can be reported which include a group identifier, representative message, representative execution path, count, and aggregated runtime data.
    • 监视应用程序以识别不同的执行路径,例如由于应用程序接收到消息而发生的被调用组件的序列。 在一种方法中,基于距离算法确定执行路径之间的相似性,并且将相似的执行路径分配给公共组。 此外,获取应用程序运行时数据,例如响应时间,用于执行路径并为组聚合。 消息也可以基于执行路径的分组来分组。 此外,可以为每个执行路径组确定代表执行路径,以便与后续执行路径进行比较。 可以类似地为每个消息组确定代表消息。 可以报​​告包括组标识符,代表性消息,代表性执行路径,计数和聚合运行时数据的结果。
    • 2. 发明授权
    • Monitoring clustered software applications
    • 监控群集软件应用程序
    • US07743380B2
    • 2010-06-22
    • US11040768
    • 2005-01-21
    • David Isaiah SeidmanPiotr Findeisen
    • David Isaiah SeidmanPiotr Findeisen
    • G06F9/46G06F9/44
    • G06F11/3616G06F11/3466G06F2201/81G06F2201/865
    • Embodiments of the invention distribute profiling responsibilities for a clustered application to various instances of the application that generally run on different computer hosts. In an embodiment, the profiling responsibility is measured in terms of metrics wherein each profiling agent of an instance collects metrics about that instance. The metrics are prioritized and assigned to instances such that the highest priority metrics are assigned if possible. Each metric is associated with an expected performance overhead, and the assignment of metrics to an instance is done such that the performance overhead on that instance and/or host does not exceed a threshold. Other embodiments are also disclosed.
    • 本发明的实施例将集群应用的分布责任分配给通常在不同计算机主机上运行的应用的各种实例。 在一个实施例中,分析责任是根据度量来衡量的,其中实例的每个分析代理收集关于该实例的度量。 度量被优先排列并分配给实例,以便尽可能分配最高优先权度量。 每个度量与期望的性能开销相关联,并且完成对实例的指标分配,使得该实例和/或主机上的性能开销不超过阈值。 还公开了其他实施例。
    • 4. 发明申请
    • PREDICTING OUT OF MEMORY CONDITIONS USING SOFT REFERENCES
    • 使用软参考预测存储条件
    • US20080147705A1
    • 2008-06-19
    • US11610085
    • 2006-12-13
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • Jyoti Kumar BansalDavid Isaiah SeidmanMark J. Addleman
    • G06F17/30
    • G06F12/0253
    • A near out-of-memory condition in a memory space is detected by creating softly reachable objects which are garbage collected when the memory space is becoming full. The softly reachable objects are objects that can be cleared at the discretion of the garbage collector when heap memory is running low. An agent process of an application can create soft reference objects which reference the softly reachable objects, and periodically poll the soft reference objects to determine if the softly reachable objects have been cleared. If they have been cleared, the agent reports to the application so that a graceful shutdown of the application can be initiated. A report can also be sent to a user interface or other output device. Additional information regarding the memory space can be gained by using softly reachable objects of different sizes and/or ages. Further, a wait period for the polling can be set adaptively.
    • 通过创建在存储器空间变满时被垃圾回收的软可达对象来检测存储器空间中的近内存条件。 可轻松访问的对象是当堆内存不足时可以由垃圾收集器自行清除的对象。 应用程序的代理进程可以创建引用软可达对象的软参考对象,并周期性地轮询软参考对象以确定软可达对象是否已被清除。 如果它们被清除,代理将向应用程序报告,以便可以启动应用程序的正常关闭。 还可以将报告发送到用户界面或其他输出设备。 可以通过使用不同尺寸和/或年龄的轻柔可达的物体获得关于存储器空间的附加信息。 此外,轮询的等待时间可以自适应地设定。
    • 5. 发明授权
    • Capacity planning based on resource utilization as a function of workload
    • 基于资源利用的容量规划作为工作负载的函数
    • US08402468B2
    • 2013-03-19
    • US12049840
    • 2008-03-17
    • David Isaiah SeidmanMark Jacob Addleman
    • David Isaiah SeidmanMark Jacob Addleman
    • G06F9/46G06F15/173
    • G06F11/3452G06F11/3442G06F11/3466G06F11/3476G06F2201/865
    • Capacity planning based on resource utilization as a function of workload is disclosed. The workload may include different types of requests such as login requests, requests to visit web pages, requests to purchase an item on an online shopping site, etc. In one embodiment, data is determined for each of a plurality of workloads. The data includes characteristics of a workload and resource utilization due at least in part processing that workload. Based on the data, utilization of each of the resources as a function of workload characteristics is estimated. Further, based on the estimated resource utilization, workload characteristics that are expected to cause each respective resource to reach a certain level are predicted. That level could be 100 percent utilization, but could be another level. Capacity planning is performed based on the workload characteristics that are expected to cause each respective resource to reach a certain level.
    • 披露了基于资源利用作为工作负载的功能的容量规划。 工作负载可以包括不同类型的请求,例如登录请求,访问网页的请求,在网络购物站点上购买项目的请求等。在一个实施例中,为多个工作负载中的每一个确定数据。 数据包括工作负载和资源利用率的特征,至少部分地处理该工作负载。 根据数据,估计作为工作负载特性的函数的每个资源的利用。 此外,基于估计的资源利用率,预测预期使各个资源达到一定水平的工作量特性。 该水平可能是100%的利用率,但可能是另一个水平。 基于预期导致每个相应资源达到一定水平的工作负载特征来执行容量规划。
    • 9. 发明申请
    • AUTOMATIC ROOT CAUSE ANALYSIS OF PERFORMANCE PROBLEMS USING AUTO-BASELINING ON AGGREGATED PERFORMANCE METRICS
    • 自动根本原因分析使用自动基线对累积性能指标的性能问题
    • US20080235365A1
    • 2008-09-25
    • US11688475
    • 2007-03-20
    • Jyoti Kumar BansalDavid Isaiah Seidman
    • Jyoti Kumar BansalDavid Isaiah Seidman
    • G06F15/173
    • H04L43/16H04L43/06H04L43/0852
    • Anomalous behavior in a distributed system is automatically detected. Metrics are gathered for transactions, subsystems and/or components of the subsystems. The metrics can identify response times, error counts and/or CPU loads, for instance. Baseline metrics and associated deviation ranges are automatically determined and can be periodically updated. Metrics from specific transactions are compared to the baseline metrics to determine if an anomaly has occurred. A drill down approach can be used so that metrics for a subsystem are not examined unless the metrics for an associated transaction indicate an anomaly. Further, metrics for a component, application which includes one or more components, or process which includes one or more applications, are not examined unless the metrics for an associated subsystem indicate an anomaly. Multiple subsystems can report the metrics to a central manager, which can correlate the metrics to transactions using transaction identifiers or other transaction context data.
    • 自动检测分布式系统中的异常行为。 为子系统的事务,子系统和/或组件收集度量标准。 例如,度量可以标识响应时间,错误计数和/或CPU负载。 基线指标和相关偏差范围自动确定,并可定期更新。 将特定事务的度量与基准度量进行比较,以确定是否发生异常。 可以使用向下钻取方法,以便不对子系统的度量进行检查,除非相关事务的度量标准表示异常。 此外,除非相关联的子系统的度量指示异常,否则不检查包括一个或多个组件的组件,应用程序的度量或包括一个或多个应用程序的过程。 多个子系统可以将度量报告给中央管理器,其可以使用事务标识符或其他事务上下文数据将度量与事务相关联。