会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Range image pixel matching method
    • 范围图像像素匹配方法
    • US09025862B2
    • 2015-05-05
    • US13879563
    • 2011-10-07
    • Frederic Garcia BecerroBruno Mirbach
    • Frederic Garcia BecerroBruno Mirbach
    • G06K9/00G06T15/00G06T7/00
    • G06T15/00G06T7/30G06T2207/10028
    • A method for matching the pixels (10-1, 10-2) of a first range image of a scene (18) as seen from a first point of sight (14) with pixels (12-1, 12-2) of a second range image of the scene as seen from a second point of sight (16) comprises the following steps: providing the first range image as a grid of source pixels (10), on which the scene is mapped in accordance with a first projection associated with the first point of sight, wherein each source pixel has a point in the scene projected thereon in accordance with the first projection and has associated therewith a range value determined for that point in the scene; providing a grid of target pixels (12) for the second range image and a second projection associated with the second point of sight; and for each one of the target pixels, a) determining which source pixel would have the same point (P1, P2) in the scene projected thereon in accordance with the first projection as the target pixel would have projected thereon in accordance with the second projection if the imaged scene were a planar surface at a certain surface distance from the first point of sight; b) determining a depth coordinate of the point in the scene that the source pixel determined in step a) actually has projected thereon in accordance with the first projection; c) if the depth coordinate is greater than a threshold, which is itself greater than the surface distance, repeating steps a), b) and c) with an increased surface distance at step a) and an increased threshold at step c), and else associating the target pixel with the source pixel determined in step a).
    • 一种用于将从第一视点(14)观看的场景(18)的第一范围图像的像素(10-1,10-2)与像素(12-1,12-2)匹配的方法, 从第二视点(16)观察的场景的第二范围图像包括以下步骤:将第一范围图像提供为源像素的网格,其上根据第一投影相关联地映射场景 具有第一视点,其中每个源像素具有根据第一投影在其上投影的场景中的点,并且具有与其相关联地为该场景中的该点确定的范围值; 提供用于所述第二范围图像的目标像素(12)的网格和与所述第二视点相关联的第二投影; 并且对于目标像素中的每一个,a)根据第一投影确定在投影到其上的场景中哪个源像素将具有相同的点(P1,P2),因为目标像素将根据第二投影 如果成像的场景是距离第一视点的某一表面距离处的平坦表面; b)根据第一投影确定在步骤a)中确定的源像素实际上已在其上投影的场景中的点的深度坐标; c)如果深度坐标大于其本身大于表面距离的阈值,则重复步骤a),b)和c),步骤a)处的表面距离增加,并且在步骤c)增加阈值,以及 否则将目标像素与在步骤a)中确定的源像素相关联。
    • 5. 发明授权
    • Pattern classification method
    • 模式分类方法
    • US08346684B2
    • 2013-01-01
    • US12374076
    • 2007-07-17
    • Bruno MirbachPandu Devarakota
    • Bruno MirbachPandu Devarakota
    • G06F15/18
    • G06K9/6273G06K9/6262
    • For assigning a test pattern to a class chosen from a predefined set of classes, the class membership probability for the test pattern is calculated as well as the confidence interval for the class membership probability based upon a number of training patterns in a neighborhood of the test pattern in the feature space. The number of training patterns in the neighborhood of the test pattern is obtained from computing a convolution of a density function of the training patterns with a Gaussian smoothing function centered on the test pattern, where the density function of the training patterns is represented as a mixture of Gaussian functions. The convolution of the smoothing function and the mixture of Gaussian functions can be expressed analytically.
    • 为了将测试模式分配给从预定义的一组类中选择的类,测试模式的类成员概率以及基于测试邻域中的训练模式数量的类成员概率的置信区间进行计算 特征空间中的图案。 通过计算训练模式的密度函数的卷积与以测试模式为中心的高斯平滑函数获得测试模式附近的训练模式的数量,其中训练模式的密度函数被表示为混合 的高斯函数。 平滑函数的卷积和高斯函数的混合可以分析地表达。
    • 6. 发明申请
    • REAL-TIME DYNAMIC REFERENCE IMAGE GENERATION FOR RANGE IMAGING SYSTEM
    • 实时动态成像系统的动态参考图像生成
    • US20120229646A1
    • 2012-09-13
    • US13497100
    • 2010-09-16
    • Frédéric GrandidierBruno MirbachThomas Solignac
    • Frédéric GrandidierBruno MirbachThomas Solignac
    • H04N5/232H04N7/18
    • G06K9/00201G06K9/00771G06K2209/015G06T7/254G06T2207/10028G06T2207/30236
    • A dynamic reference range image generation method comprises providing a reference range image, to be dynamically updated, composed of pixels, each of which contains a reference range value. An acquired range image is provided, the pixels of which contain each a measured range value, the measured range values being updated at a predetermined rate. Pixels of the acquired range image containing an invalid measured range value are accordingly marked. The measured range value of each pixel of the acquired range image not marked as containing an invalid measured range value is compared with the reference range value of the corresponding pixel of the reference range image. The reference range value of that pixel of the reference range image is updated e.g. to the measured range value or to an average of the measured range value and one or more prior measured range values if a) the measured range value is considered less than the reference range value and has remained substantially constant for a first time period, or if b) the measured range value is considered greater than the reference range value and has remained substantially constant for a second time period smaller than the first time period. If neither of conditions a) and b) is fulfilled, the reference range value is kept substantially constant instead.
    • 动态参考范围图像生成方法包括提供要被动态更新的,由像素组成的参考范围图像,每个像素包含参考范围值。 提供获取的范围图像,其像素包含每个测量范围值,测量的范围值以预定速率更新。 相应地标记包含无效测量范围值的所获取范围图像的像素。 将未被标记为包含无效测量范围值的所获取的范围图像的每个像素的测量范围值与参考范围图像的对应像素的参考范围值进行比较。 参考范围图像的该像素的参考范围值被更新。 如果a)测量的范围值被认为小于参考范围值并且在第一时间段内保持基本上恒定,或者如果在一个或多个测量范围值中, b)测量的范围值被认为大于参考范围值,并且在小于第一时间段的第二时间段内保持基本上恒定。 如果条件a)和b)都不满足,则参考范围值保持基本上不变。
    • 7. 发明申请
    • PATTERN CLASSIFICATION METHOD
    • 模式分类方法
    • US20090319451A1
    • 2009-12-24
    • US12374076
    • 2007-07-17
    • Bruno MirbachPandu Devarakota
    • Bruno MirbachPandu Devarakota
    • G06F15/18G06N5/04G06N7/04
    • G06K9/6273G06K9/6262
    • For assigning a test pattern to a class chosen from a predefined set of classes, the class membership probability for the test pattern is calculated as well as the confidence interval for the class membership probability based upon a number of training patterns in a neighbourhood of the test pattern in the feature space. The number of training patterns in the neighbourhood of the test pattern is obtained from computing a convolution of a density function of the training patterns with a Gaussian smoothing function centred on the test pattern, where the density function of the training patterns is represented as a mixture of Gaussian functions. The convolution of the smoothing function and the mixture of Gaussian functions can be expressed analytically.
    • 为了将测试模式分配给从预定义的一组类中选择的类,测试模式的类成员概率以及基于测试邻域中的训练模式数量的类成员概率的置信区间进行计算 特征空间中的图案。 通过计算训练模式的密度函数的卷积与以测试模式为中心的高斯平滑函数获得测试模式附近的训练模式的数量,其中训练模式的密度函数被表示为混合 的高斯函数。 平滑函数的卷积和高斯函数的混合可以分析地表达。
    • 9. 发明授权
    • Real-time dynamic reference image generation for range imaging system
    • 范围成像系统的实时动态参考图像生成
    • US09400917B2
    • 2016-07-26
    • US13497100
    • 2010-09-16
    • Frédéric GrandidierBruno MirbachThomas Solignac
    • Frédéric GrandidierBruno MirbachThomas Solignac
    • H04N7/18H04N5/232G06K9/00G06T7/20
    • G06K9/00201G06K9/00771G06K2209/015G06T7/254G06T2207/10028G06T2207/30236
    • A dynamic reference range image generation method comprises providing a reference range image, to be dynamically updated, composed of pixels, each of which contains a reference range value. An acquired range image is provided, the pixels of which contain each a measured range value, the measured range values being updated at a predetermined rate. Pixels of the acquired range image containing an invalid measured range value are accordingly marked. The measured range value of each pixel of the acquired range image not marked as containing an invalid measured range value is compared with the reference range value of the corresponding pixel of the reference range image. The reference range value of that pixel of the reference range image is updated e.g. to the measured range value or to an average of the measured range value and one or more prior measured range values if a) the measured range value is considered less than the reference range value and has remained substantially constant for a first time period, or if b) the measured range value is considered greater than the reference range value and has remained substantially constant for a second time period smaller than the first time period. If neither of conditions a) and b) is fulfilled, the reference range value is kept substantially constant instead.
    • 动态参考范围图像生成方法包括提供要被动态更新的,由像素组成的参考范围图像,每个像素包含参考范围值。 提供获取的范围图像,其像素包含每个测量范围值,测量的范围值以预定速率更新。 相应地标记包含无效测量范围值的所获取范围图像的像素。 将未被标记为包含无效测量范围值的所获取的范围图像的每个像素的测量范围值与参考范围图像的对应像素的参考范围值进行比较。 参考范围图像的该像素的参考范围值被更新。 如果a)测量的范围值被认为小于参考范围值并且在第一时间段内保持基本上恒定,或者如果在一个或多个测量范围值中, b)测量的范围值被认为大于参考范围值,并且在小于第一时间段的第二时间段内保持基本上恒定。 如果条件a)和b)都不满足,则参考范围值保持基本恒定。