会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Microlens structure for improved CMOS image sensor sensitivity
    • 微透镜结构提高了CMOS图像传感器的灵敏度
    • US07505206B2
    • 2009-03-17
    • US11456249
    • 2006-07-10
    • Jack DengChih-Kung ChangChin Chen KuoMing-Chang KaoFu-Tien WengBii-Junq Chang
    • Jack DengChih-Kung ChangChin Chen KuoMing-Chang KaoFu-Tien WengBii-Junq Chang
    • G02B27/10
    • G02B3/0056G02B3/0018
    • A method of manufacturing a microlens device by depositing a microlens material layer over a substrate that includes photo-sensors. The microlens material layer is then exposed and developed to define microlens material elements, including first microlens material elements and second microlens material elements. Each second microlens material element is substantially greater in thickness relative to each first microlens material element. The microlens material elements are then heated to form a microlens array that includes first microlens array elements, each corresponding to a first microlens material element, and second microlens array elements, each corresponding to a second microlens material element. Each first microlens array element has a substantially greater focal length relative to each second microlens array element. For example, each second microlens array element is substantially greater in thickness relative to each first microlens array element.
    • 一种通过在包括光电传感器的衬底上沉积微透镜材料层来制造微透镜器件的方法。 然后将微透镜材料层曝光和显影以限定微透镜材料元件,包括第一微透镜材料元件和第二微透镜材料元件。 每个第二微透镜材料元件相对于每个第一微透镜材料元件的厚度基本上更大。 然后将微透镜材料元件加热以形成微透镜阵列,其包括每个对应于第一微透镜材料元件的第一微透镜阵列元件和分别对应于第二微透镜材料元件的第二微透镜阵列元件。 每个第一微透镜阵列元件相对于每个第二微透镜阵列元件具有大得多的焦距。 例如,每个第二微透镜阵列元件相对于每个第一微透镜阵列元件的厚度基本上更大。
    • 4. 发明申请
    • NOVEL MICROLENS STRUCTURE FOR CIS SENSITIVITY IMPROVEMENT
    • 用于CIS敏感性改进的新型微结构结构
    • US20080007839A1
    • 2008-01-10
    • US11456249
    • 2006-07-10
    • Jack DENGChih-Kung CHANGChin Chen KUOM. C. KAOFu-Tien WENGBii-Junq CHANG
    • Jack DENGChih-Kung CHANGChin Chen KUOM. C. KAOFu-Tien WENGBii-Junq CHANG
    • G02B25/00G02B3/00
    • G02B3/0056G02B3/0018
    • A method of manufacturing a microlens device by depositing a microlens material layer over a substrate that includes photo-sensors. The microlens material layer is then exposed and developed to define microlens material elements, including first microlens material elements and second microlens material elements. Each second microlens material element is substantially greater in thickness relative to each first microlens material element. The microlens material elements are then heated to form a microlens array that includes first microlens array elements, each corresponding to a first microlens material element, and second microlens array elements, each corresponding to a second microlens material element. Each first microlens array element has a substantially greater focal length relative to each second microlens array element. For example, each second microlens array element is substantially greater in thickness relative to each first microlens array element.
    • 一种通过在包括光电传感器的衬底上沉积微透镜材料层来制造微透镜器件的方法。 然后将微透镜材料层曝光和显影以限定微透镜材料元件,包括第一微透镜材料元件和第二微透镜材料元件。 每个第二微透镜材料元件相对于每个第一微透镜材料元件的厚度基本上更大。 然后将微透镜材料元件加热以形成微透镜阵列,其包括每个对应于第一微透镜材料元件的第一微透镜阵列元件和分别对应于第二微透镜材料元件的第二微透镜阵列元件。 每个第一微透镜阵列元件相对于每个第二微透镜阵列元件具有大得多的焦距。 例如,每个第二微透镜阵列元件相对于每个第一微透镜阵列元件的厚度基本上更大。
    • 7. 发明申请
    • Microlens Structure for Image Sensors
    • 图像传感器的微透镜结构
    • US20100164040A1
    • 2010-07-01
    • US12722372
    • 2010-03-11
    • Ming-Chang KaoChih-Kung ChangFu-Tien WengBii-Junq Chang
    • Ming-Chang KaoChih-Kung ChangFu-Tien WengBii-Junq Chang
    • H01L31/0232
    • H01L27/14685H01L27/14627
    • A microlens structure and a method of fabrication thereof are provided. The method comprises forming a layer of microlens material over a substrate, which has photo-sensitive elements formed therein. The microlens material, which comprises a photo-resist material, is exposed in accordance with a desired pattern a plurality of times. The energy used with each exposure process is less than the energy required if a single exposure is used. Furthermore, the masks used for each exposure may differ. In an embodiment, the masks are varied so as to create a notch in the upper corner of the microlens. The microlens structure may have a height less than about 0.5 um and/or a gap between microlenses less than about 0.2 um. In an embodiment, one or more dielectric layers having a combined thickness greater than about 3.5 um are interposed between the photo-sensitive elements and the microlenses.
    • 提供微透镜结构及其制造方法。 该方法包括在其上形成有光敏元件的衬底上形成微透镜材料层。 包含光致抗蚀剂材料的微透镜材料根据期望的图案多次曝光。 每次曝光过程中使用的能量小于使用单次曝光所需的能量。 此外,用于每次曝光的掩模可能不同。 在一个实施例中,改变掩模以便在微透镜的上角形成凹口。 微透镜结构可以具有小于约0.5μm的高度和/或微透镜之间的间隙小于约0.2μm。 在一个实施例中,具有大于约3.5μm的组合厚度的一个或多个介电层插入在光敏元件和微透镜之间。
    • 9. 发明授权
    • Method for fabricating high resolution color filter image array optoelectronic microelectronic fabrication
    • 高分辨率彩色滤光片图像阵列光电微电子制造方法
    • US06511779B1
    • 2003-01-28
    • US09634776
    • 2000-08-09
    • Fu-Tien WengChiu-Kung ChangYu-Kung HsiaoBii-Junq ChangKuo-Lian Lu
    • Fu-Tien WengChiu-Kung ChangYu-Kung HsiaoBii-Junq ChangKuo-Lian Lu
    • G02D520
    • H01L27/14685H01L27/14621H01L27/14627H01L31/02162H01L31/02327
    • Within a method for forming an image array optoelectronic microelectronic fabrication there is first provided a substrate. There is then formed at least in part over the substrate a bidirectional array of image array optoelectronic microelectronic pixel elements comprising a plurality of series of patterned color filter layers corresponding with a plurality of colors. Within the method, at least one series of patterned color filter layers within the plurality of series of patterned color filter layers corresponding with at least one color within the plurality of colors is formed employing a photolithographic method which employs a plurality of separate photoexposure steps for forming a plurality of separate sub-series of patterned color filter layers within the series of patterned color filter layers corresponding with the at least one color within the plurality of colors. By employing the plurality of separate photoexposure steps for forming the plurality of separate sub-series of patterned color filter layers within the series of patterned color filter layers corresponding with the at least one color within the plurality of colors, the image array optoelectronic microelectronic fabrication is formed with enhanced resolution.
    • 在用于形成图像阵列光电微电子制造的方法中,首先提供衬底。 然后至少部分地在衬底上形成包括对应于多种颜色的多个图案化滤色器层的多个图案阵列光电微电子像素元件的双向阵列。 在该方法中,使用光刻方法形成与多个颜色中的至少一种颜色相对应的多个图案化滤色器层系列内的至少一系列图案化滤色器层,其采用多个单独的曝光步骤以形成 在所述一系列图案化滤色器层内的多个分离的子系列的图案化滤色器层,其对应于所述多种颜色中的所述至少一种颜色。 通过采用多个单独的曝光步骤,用于在对应于多种颜色中的至少一种颜色的一系列图案化滤色器层内形成多个单独的子系列图案化滤色器层,图像阵列光电微电子制造是 形成了更高的分辨率。
    • 10. 发明授权
    • High efficiency color filter process to improve color balance in semiconductor array imaging devices
    • 高效率的彩色滤光片工艺可以改善半导体阵列成像装置的色彩平衡
    • US06395576B1
    • 2002-05-28
    • US09593537
    • 2000-06-14
    • Chih-Kung ChangYu-Kung HsiaoSheng-Liang PanBii-Junq Chang
    • Chih-Kung ChangYu-Kung HsiaoSheng-Liang PanBii-Junq Chang
    • H01L2100
    • H01L27/14609H01L27/14621H01L27/14623H01L27/14627
    • Formation of integrated color filters for gain-ratio balanced semiconductor array imagers using a spectrophotometric feedback control loop to adjust layer thickness during the deposition process is disclosed. The fabrication sequence of G/R/B conventionally used in Prior Art has been changed to B/R/G or B/G/R to enable the process to adapt to yielding specified color gain-ratio values without the need for integrated circuit redesign. A high efficiency color filter process is demonstrated wherein the additional neutral-density attenuator layers and/or spacer layers required in Prior Art fabrication methods are eliminated. The disclosed process is shown to enable high-precision thickness control of the color filter layers. Blue coating lift-off problems and the steric effect associated with successive depositions of color layers having step-height variations are eliminated. Statistical process control (SPC) is optimized by calibration of the color balance gain-ratio using the product photodiode arrays and amplifier integrated circuits with a real-time spectrophotometric feedback control-loop during the dye or pigment layer deposition process.
    • 公开了用于增益比平衡的半导体阵列成像器的集成滤色器的形成,其使用分光光度反馈控制环来在沉积过程中调节层厚度。 现有技术中常规使用的G / R / B的制造顺序已经改变为B / R / G或B / G / R,以使该工艺适应于产生指定的颜色增益比值,而不需要集成电路重新设计 。 证明了高效率滤色器工艺,其中消除了现有技术制造方法中所需的附加中性密度衰减器层和/或间隔层​​。 所公开的过程被示出为使得能够对滤色器层进行高精度的厚度控制。 消除蓝色涂层剥离问题和与具有阶跃高度变化的彩色层的连续沉积相关的空间效应。 通过使用产品光电二极管阵列和放大器集成电路通过在染料或颜料层沉积过程中具有实时分光光度反馈控制环来校准色平衡增益比来优化统计过程控制(SPC)。