会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ATHERMAL ARRAYED WAVEGUIDE GRATING MODULE AND THE MANUFACTURING METHOD THEREOF
    • 高温阵列波导光栅模块及其制造方法
    • WO2008044836A1
    • 2008-04-17
    • PCT/KR2007/004810
    • 2007-10-02
    • POINTEK INCTAE HYUNG, RheeTAE HUN, KimHYUNG JAE, LeeBYONG GWON, You
    • TAE HYUNG, RheeTAE HUN, KimHYUNG JAE, LeeBYONG GWON, You
    • G02B6/12
    • G02B6/12033G02B6/12014G02B6/12016G02B6/1203
    • The wavelength multiplexing and demultiplexing characteristics of the AWG (Arrayed Waveguide Grating) module are closely related to specificity of spectral position dependent on specific wavelengths. The positional specificity is such that when a position of the originally designed input waveguide (1) is moved horizontally in x-direction (9) along the tangential interface of the input slab waveguide (3) to the incident light propagation path, the wavelengths of light entering into the output waveguide (2) undergoes proportionate shifting. The wavelength at the output waveguide (2) shits by dλwhen the position is moved by dx in the horizontal direction from the center of the focal point of the input slab waveguide (3). The temperature dependency of the wavelength can be compensated by utilizing this positional shifting of wavelengths; namely by changing input waveguide's position on the input slab guide (3). In order to move the position of the input waveguide (1) passively upon the temperature change, it is necessary to move horizontally (x-direction (9)) the position of the originally designed input waveguide (1) attached with a temperature compensation rod (10) having larger TEC than substrate; the horizontal movement is effected when the temperature compensation rod (10) undergoes thermal expansion and contraction. The present invention features the novelty of temperature-independent AWG module and the manufacturing method, regarding specifically to improvement of optical loss and optical return, and to the suitable materials for the temperature compensation rod, which matches to the specific wavelength division spacing.
    • AWG(阵列波导光栅)模块的波长复用和解复用特性与依赖于特定波长的光谱位置的特异性密切相关。 位置特异性使得当原始设计的输入波导(1)的位置沿着输入平板波导(3)的切向界面沿x方向(9)水平移动到入射光传播路径时,波长 进入输出波导(2)的光经历比例偏移。 当位置从输入平板波导(3)的焦点的中心沿水平方向移动dx时,输出波导(2)处的波长为d 1。 通过利用这种波长的位置偏移可以补偿波长的温度依赖性; 即通过改变输入板导板(3)上的输入波导的位置。 为了将输入波导(1)的位置无源地移动到温度变化上,需要水平(x方向(9))移动附加有温度补偿棒的原始设计的输入波导(1)的位置 (10)具有比底物大的TEC; 当温度补偿杆(10)经受热膨胀和收缩时,水平运动。 本发明的特征在于独立于温度的AWG模块的新颖性和专门用于改善光损耗和光学返回的制造方法,以及与特定波长间隔匹配的用于温度补偿棒的合适材料。
    • 3. 发明授权
    • Optical fiber array connector and method for fabricating the same
    • 光纤阵列连接器及其制造方法
    • US06243518B1
    • 2001-06-05
    • US09482534
    • 2000-01-14
    • Hyung-Jae LeeByong-Gwon YouTae-Hyung Rhee
    • Hyung-Jae LeeByong-Gwon YouTae-Hyung Rhee
    • G02B638
    • G02B6/3839
    • An optical fiber array connector and a method for fabricating the optical fiber array connector are disclosed. The disclosed optical fiber array connector an upper base plate and a lower base plate each being provided at a main surface thereof, in a desired region, with a plurality of first grooves each extending throughout the base plate in a direction corresponding to a longitudinal direction of an optical fiber to be mounted therein, and in regions other than the region where the first grooves are arranged, with a plurality of second grooves each extending throughout the base plate in a direction corresponding to a longitudinal direction of an alignment pin to be inserted therein, the upper and lower base plates being bonded to each other in such a fashion that the first and second grooves of the upper base plate face those of the lower base plate, respectively. A plurality of optical fibers are mounted between the upper and lower base plates in such a fashion that each of them is in contact with associated ones of the facing first grooves of the upper and lower base plates. Tubes are mounted between the upper and lower base plates in such a fashion that each of them is in contact with associated ones of the facing second grooves of the upper and lower base plates, each of the tubes having an insertion hole adapted to receive an alignment pin therein.
    • 公开了一种光纤阵列连接器及其制造方法。 所公开的光纤阵列连接器在所需区域中分别设置在其主表面上的上基板和下基板,多个第一凹槽各自沿着与基板的纵向方向对应的方向延伸穿过基板 安装在其中的光纤,以及除了布置有第一槽的区域之外的区域中,多个第二槽沿着对准销的纵向方向贯穿整个基板延伸以插入其中 上下基板以这样一种方式接合,使得上基板的第一和第二槽分别面对下基板的第一和第二槽。 多个光纤以这样的方式安装在上基板和下基板之间,使得它们中的每一个与上基板和下基板的相对的相对的第一凹槽相接触。 管子以这样的方式安装在上基板和下基板之间,使得它们中的每一个与上基板和下基板的相对的相对的第二凹槽接触,每个管具有适于接收对准的插入孔 销在其中。
    • 5. 发明授权
    • Pigtailing method between optical waveguide device and optical fiber
array
    • 光波导器件与光纤阵列之间的剔除方法
    • US6122423A
    • 2000-09-19
    • US206248
    • 1998-12-07
    • Byong-gwon YouTae-hyung RheeHyung-jae Lee
    • Byong-gwon YouTae-hyung RheeHyung-jae Lee
    • G02B6/122G02B6/30
    • G02B6/30
    • The present invention includes a pigtailing method between an optical waveguide device and an optical fiber array module, comprising the steps of preparing the optical waveguide device having optical waveguides of n1 input ports and n2 output ports on the lateral surface of a substrate, wherein n1 and n2 are integers equal to or greater than 1, aligning the optical fiber array module having optical fibers arranged at equal distances between the input ports and between the output ports, to the input and output ports of the optical waveguide device, and attaching the aligned optical fiber array module to the lateral surface of the optical waveguide device. Since only one attachment process of the optical fiber array module to the optical waveguide device is required, the fabrication cost can be reduced.
    • 本发明包括一种光波导器件和光纤阵列模块之间的尾纤方法,其特征在于包括以下步骤:在衬底的侧表面上准备具有n1个输入端口和n2个输出端口的光波导的光波导器件,其中n1和 n2是等于或大于1的整数,将具有布置在输入端口之间和输出端口之间的相等距离​​的光纤的光纤阵列模块对准到光波导器件的输入和输出端口,并且将对准的光学器件 光纤阵列模块到光波导器件的侧表面。 由于仅需要光纤阵列模块到光波导装置的一个连接处理,所以可以降低制造成本。
    • 7. 发明授权
    • Method for fabricating low-loss optically active device
    • US06210867B1
    • 2001-04-03
    • US09031064
    • 1998-02-26
    • Byong-gwon YouHyung-jae LeeTae-hyung RheeYong-woo Lee
    • Byong-gwon YouHyung-jae LeeTae-hyung RheeYong-woo Lee
    • G02F135
    • G02F1/365G02B2006/12069G02B2006/12142G02B2006/12145G02B2006/12147G02B2006/12159G02F1/065
    • A method for fabricating low-loss optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes method for fabricating an optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes the steps of: forming a lower clad layer having a refractive index lower than the material of the waveguide core regions and optical transparency on a substrate, forming a linear optical polymer layer on the lower clad layer by coating linear optical polymer having a refractive index lower than the material of the lower clad layer, forming a first metal layer at a region on the lower clad layer, other than the regions where the waveguide is to be disposed, etching a linear optical polymer layer without the first metal layer formed thereon, forming a non-linear optical polymer layer on the substrate having the non-linear core region, removing the non-linear optical polymer layer stacked to be higher than the waveguide core regions, removing the first metal layer, forming a second metal layer on the waveguide from which the first metal layer is removed, removing the linear optical polymer of the non-second metal layer portion, and forming an upper clad layer on the substrate with the linear optical polymer using a material having a refractive index lower than the waveguide core regions and optical transparency. The waveguide is formed using non-linear optical polymer only at the region where the non-linear effect such as optical modulation or optical switching occurs, and is formed using linear optical polymer at the remaining regions, thereby minimizing the overall waveguiding loss of the waveguide.
    • 8. 发明授权
    • Method of fabricating planar optical waveguides in one chamber
    • 在一个室中制造平面光波导的方法
    • US06177290B1
    • 2001-01-23
    • US09184232
    • 1998-11-02
    • Woo-hyuk JangSang-yun YiByong-gwon YouJung-hee KimTae-hyung Rhee
    • Woo-hyuk JangSang-yun YiByong-gwon YouJung-hee KimTae-hyung Rhee
    • H01L2131
    • C03C17/02C03C17/3411C03C2218/33G02B6/136G02B2006/1215
    • A method of fabricating a planar optical waveguide in one chamber, comprising the steps of depositing a cladding layer and a core layer on a substrate, depositing an etch mask layer on the core layer, and forming a photoresist pattern on the etch mask layer. An etch mask pattern is formed by etching the etch mask layer according to the photoresist pattern using a first gas which reacts with the material of the etch mask layer, and removing the first gas. An optical waveguide is formed by etching the core layer according to the etch mask pattern using a second gas which reacts with the material of the core layer in the same chamber as the chamber where the above steps were performed, and removing the photoresist pattern and the second gas. The etch mask pattern is removed using the first gas which reacts with the material of the etch mask pattern in the same chamber as the chamber where the above steps were performed, and removing the first gas, and depositing an upper cladding layer formed of the same material as the core layer on the resultant structure of the above step. Accordingly, processes for fabricating an optical waveguide can be continuously performed in one chamber, thus simplifying and automating the optical waveguide fabrication method.
    • 一种在一个室中制造平面光波导的方法,包括以下步骤:在衬底上沉积包覆层和芯层,在芯层上沉积蚀刻掩模层,以及在蚀刻掩模层上形成光致抗蚀剂图案。 通过使用与蚀刻掩模层的材料反应并且去除第一气体的第一气体,根据光致抗蚀剂图案蚀刻蚀刻掩模层来形成蚀刻掩模图案。 通过使用与在上述步骤的室相同的室中与芯层的材料反应的第二气体根据蚀刻掩模图案蚀刻芯层来形成光波导,并且去除光致抗蚀剂图案和 第二气。 使用与在其中执行上述步骤的室相同的腔室中与蚀刻掩模图案的材料反应的第一气体去除蚀刻掩模图案,并且去除第一气体,并沉积由其形成的上覆层 材料作为上述步骤的结果结构上的核心层。 因此,可以在一个室中连续地进行制造光波导的工艺,从而简化和自动化光波导制造方法。
    • 10. 发明授权
    • Optical waveguide chip and method of formation thereof
    • 光波导芯片及其形成方法
    • US06442315B1
    • 2002-08-27
    • US09195660
    • 1998-11-18
    • Tae-hyung RheeHyung-jae LeeSang-yun YiByong-gwon You
    • Tae-hyung RheeHyung-jae LeeSang-yun YiByong-gwon You
    • G02B626
    • G02B6/305G02B2006/12195
    • An optical waveguide chip includes an output waveguide connected to an optical fiber, an optical fiber array module, or another optical waveguide chip. The output waveguide has a coupling cross-section wider than the core of the optical fiber, the core of an optical fiber of the optical fiber array module, and the waveguide of the other optical waveguide, respectively. The cross-section width of the output waveguide of the optical waveguide chip gradually increases toward an end of the waveguide with a slant angle of 10° or less. Therefore, when the optical waveguide chip is connected to the optical fiber, the optical fiber array module, or the other optical waveguide chip during packaging of an optical waveguide device, an offset of the optical axis of about ±20% of the width of the waveguide guide is allowable. As a result, there are no additional or extra steps in fabrication of an optical waveguide chip and no additional loss of the optical characteristics, and the required interconnection or production time is considerably reduced.
    • 光波导芯片包括连接到光纤的输出波导,光纤阵列模块或另一光波导芯片。 输出波导具有比光纤的核心更宽的光耦合横截面,光纤阵列模块的光纤的核心和另一个光波导的波导。 光波导芯片的输出波导的横截面宽度以10°或更小的倾斜角朝向波导的端部逐渐增加。 因此,当光波导芯片在光波导器件的封装期间连接到光纤,光纤阵列模块或另一个光波导芯片时,光轴的偏移约为± 波导引导是允许的。 结果,在光波导芯片的制造中没有额外的或额外的步骤,并且没有额外的光学特性损失,并且所需的互连或生产时间大大降低。