会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Interferometric method and apparatus for measuring physical parameters
    • 用于测量物理参数的干涉测量方法和装置
    • US20060146337A1
    • 2006-07-06
    • US10544270
    • 2004-01-20
    • Arthur Hartog
    • Arthur Hartog
    • G01B9/02
    • G01D5/35383E21B47/065E21B47/123G01K11/32G01L1/246
    • A method of measuring a selected physical parameter at a location within a region of interest comprises the steps of: launching optical pulses at a plurality of reselected interrogation wavelengths into an optical fibber (1) deployed along the region of interest, reflectors (20,21,2n) being arrayed along the optical fibber (1) to form an array (9) of sensor elements, the optical path length between the said reflectors (2) being dependent upon the selected parameter; detecting the returned optical interference signal for each of the reselected wavelengths; and determining from the optical interference signal the absolute optical path length (L) between two reflectors (2) at the said location, and from the optical path length (L) so determined the value of the selected parameter at the said location; wherein the step of determining the absolute optical path length (L) comprises carrying out a process in which the phase difference between the interference signals for a pair of the reselected wavelengths is estimated using an estimated value for the optical path length (L), the estimated phase difference is used to estimate the phase at each of those wavelengths, and the phase thus obtained is used to revise the estimated value for the optical path length (L), the process being repeated for some or all remaining wavelength pairs in sequence, on the basis of the optical path length (L) estimated for the immediately preceding pair in the sequence, thereby to progressively revise the optical path length (L) until it is know to a desired level of accuracy.
    • 一种在感兴趣区域内的位置处测量所选择的物理参数的方法包括以下步骤:将多个重新选择的询问波长的光脉冲发射到沿着感兴趣区域部署的光纤(1)中,反射器(2
    • 5. 发明授权
    • Borehole telemetry system
    • 井眼遥测系统
    • US09000942B2
    • 2015-04-07
    • US11598459
    • 2006-11-13
    • Ian AtkinsonYuehua ChenArthur HartogFranck MonmontRogerio RamosRobert SchroederJeffrey Tarvin
    • Ian AtkinsonYuehua ChenArthur HartogFranck MonmontRogerio RamosRobert SchroederJeffrey Tarvin
    • H04B13/02E21B47/12
    • E21B47/123
    • A telemetry apparatus and method for communicating data from a down-hole location through a borehole to the surface is described including a light source, an optical fiber being placed along the length of the wellbore and receiving light from the light source, a transducer located such as to produce a force field (e.g. a magnetic field) across the optical fiber and its protective hull without mechanical penetration of the hull at the down-hole location, one or more sensors for measuring down-hole conditions and/or parameters, a controller to provide a modulated signal to the magnetic field generator, said modulated signal being under operating conditions representative of measurements by the one or more sensors, and an optical detector adapted to detect changes in the light intensity or polarization of light passing through the fiber.
    • 一种遥测设备和方法,用于将数据从井下位置通过钻孔传送到表面,其包括光源,沿着井眼的长度放置的光纤并且接收来自光源的光,传感器位于 为了在整个光纤及其保护壳体上产生力场(例如磁场),而不会在井下位置机体穿透船体,一个或多个用于测量井下条件和/或参数的传感器,控制器 为了向磁场发生器提供调制信号,所述调制信号处于代表一个或多个传感器的测量值的操作条件下,以及适于检测通过光纤的光的光强度或偏振的变化的光学检测器。
    • 6. 发明申请
    • Redundant Optical Fiber System and Method for Remotely Monitoring the Condition of a Pipeline
    • 冗余光纤系统和远程监控管道状况的方法
    • US20110242525A1
    • 2011-10-06
    • US13119231
    • 2009-09-23
    • Andrew StrongGareth LeesRoger HampsonKevin WilliamsArthur Hartog
    • Andrew StrongGareth LeesRoger HampsonKevin WilliamsArthur Hartog
    • G01N21/00
    • G01M11/083G01M11/3154G01M11/39
    • An optical fiber sensor system and method for monitoring a condition of a linear structure such as a pipeline is provided which is capable of providing continuous monitoring in the event of a break in the sensing optical fiber or fibers. The system includes at least one sensing fiber provided along the length of the linear structure, and first and second interrogation and laser pumping sub-systems disposed at opposite ends of the sensing fiber, each of which includes a reflectometer. The reflectometer of the first interrogation and laser pumping sub-system is connected to one end of the sensing fiber. The reflectometer of the second interrogation and laser pumping sub-system is coupled to either (i) an end of a second sensing fiber provided along the length of the linear structure which is opposite from the one end of the first sensing fiber, or (ii) the opposite end of the first sensing fiber. Before any break of the sensing fiber or fibers occurs, each reflectometer redundantly monitors the condition of the linear structure over its entire length. After any such break occurs, each reflectometer will continue to receive signals up to the point of the break from opposite ends of the structure.
    • 提供了一种用于监视诸如管道之类的线性结构的状态的光纤传感器系统和方法,其能够在感测光纤或光纤中断时提供连续的监视。 该系统包括沿着线性结构的长度提供的至少一个感测光纤,以及设置在感测光纤的相对端处的第一和第二询问和激光泵浦子系统,每个检测光纤包括反射计。 第一询问和激光泵送子系统的反射计连接到感测光纤的一端。 第二询问和激光泵送子系统的反射计耦合到(i)沿着与第一感测光纤的一端相对的线性结构的长度设置的第二感测光纤的端部,或者(ii )第一感测光纤的相对端。 在发生感测纤维或纤维的任何断裂之前,每个反射计在其整个长度上冗余地监视线性结构的状态。 在发生任何这种中断之后,每个反射计将继续从结构的相对端接收到断裂点的信号。
    • 7. 发明申请
    • Distributed optical fibre measurements
    • 分布式光纤测量
    • US20060245468A1
    • 2006-11-02
    • US10554116
    • 2005-03-31
    • Arthur Hartog
    • Arthur Hartog
    • G01K11/00
    • G01K11/32
    • A method of obtaining a distributed measurement comprises deploying an optical fibre in a measurement region of interest, and launching into it a first optical signal at a first wavelength λ0 and a high power level, a second optical signal at a second wavelength λ−1, and a third optical signal at the first wavelength λ0 and a low power level. These optical signals generate backscattered light at the second wavelength λ−1 arising from Raman scattering of the first optical signal which is indicative of a parameter to be measured, at the first wavelength λ0 arising from Rayleigh scattering of the first optical signal, at the second wavelength λ−1 arising from Rayleigh scattering of the second optical signal, and at the first wavelength λ0 arising from Rayleigh scattering of the third optical signal. The backscattered light is detected to generate four output signals, and a final output signal is derived by normalising the Raman scattering signal to a function derived from the three Rayleigh scattering signals, which removes the effects of wavelength-dependent and nonlinear loss.
    • 获得分布式测量的方法包括在感兴趣的测量区域中布置光纤,并向其中发射第一波长λ0和高功率电平的第一光信号,第二光信号 在第二波长λ1 -1和第一波长λ0的第三光信号和低功率电平。 这些光信号产生第二波长λ-1的第二波长λ1 -1的反向散射光,该第二波长λ-1由第一光信号的拉曼散射产生,该第一光信号指示待测量的参数, SUB>由第二光信号的瑞利散射产生的第二波长λ-1 -1的第一光信号的瑞利散射产生,并且在第一波长λ0 < 由第三光信号的瑞利散射引起。 检测到反向散射光以产生四个输出信号,并且通过将拉曼散射信号归一化为从三个瑞利散射信号导出的函数来导出最终输出信号,这消除了波长相关和非线性损耗的影响。
    • 9. 发明授权
    • Pressure measuring device and method
    • 压力测量装置及方法
    • US07832276B2
    • 2010-11-16
    • US12334584
    • 2008-12-15
    • Xu WuArthur HartogDimitri CadereTsutomu Yamate
    • Xu WuArthur HartogDimitri CadereTsutomu Yamate
    • G01F9/00
    • G01L9/0079G01L9/0077
    • A device to measure a fluid pressure comprises a pressure sensing element 10 and a pressure readout element 20. The pressure sensing element 10 comprises a cavity 11 capped by a flexible membrane 13, the cavity having a length d that varies with the fluid pressure P1 applied on the flexible membrane 13. The pressure readout element 20 comprises a light source 24 for providing an incident beam of a determined wavelength range directed towards the cavity and an optical spectral analyzer 25 for measuring a power spectrum of a return beam reflected by the cavity, and processing means 27 for determining the cavity length d and the fluid pressure P1 based on the power spectrum.
    • 用于测量流体压力的装置包括压力感测元件10和压力读数元件20.压力感测元件10包括由柔性膜13封盖的空腔11,空腔具有随施加的流体压力P1而变化的长度d 压力读出元件20包括用于提供朝向空腔的确定的波长范围的入射光束的光源24和用于测量由空腔反射的返回光束的功率谱的光谱分析器25, 以及用于基于功率谱确定腔长度d和流体压力P1的处理装置27。