会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TUNNEL PHOTOVOLTAIC
    • US20130048070A1
    • 2013-02-28
    • US13585798
    • 2012-08-14
    • Arash HazeghiVivek Subramanian
    • Arash HazeghiVivek Subramanian
    • H01L31/06H01L31/18
    • H01L31/062H01L31/1804Y02E10/547Y02P70/521
    • A tunneling photovoltaic (“TPV”) device using a high-κ dielectric as a tunneling layer is disclosed. The TPV includes a P-type doped silicon semiconductor substrate. Formed on its surface is an interfacial layer, between the semiconductor substrate and the high-κ tunneling layer. Formed on the high-κ tunneling layer is an electrode layer, or stack electrode layer, receiving charge carriers that tunnel through the tunneling layer, generating a current when the device is illuminated by light. The tunneling layer can be hafnium oxide or other suitable high-κ dielectrics. A method of fabricating a high-κ TPV is also disclosed. The TPV device according to the embodiments has improved internal quantum efficiency.
    • 隧道光伏(TPV)器件使用高压 公开了作为隧穿层的电介质。 TPV包括P型掺杂硅半导体衬底。 在其表面上形成界面层,在半导体衬底和高分子材料之间。 隧道层。 形成于高科技 隧道层是电极层或堆叠电极层,接收穿过隧道层的电荷载流子,当器件被光照射时产生电流。 隧道层可以是氧化铪或其他合适的高锰酸钾。 电介质。 一种制造高性能的方法 TPV也被公开。 根据实施例的TPV装置具有改进的内部量子效率。
    • 2. 发明申请
    • Integrated capacitance bridge for high-resolution wide-temperature-range capacitance measurement
    • 用于高分辨率宽温度范围电容测量的集成电容桥
    • US20130076378A1
    • 2013-03-28
    • US13200701
    • 2011-09-27
    • Arash HazeghiJoseph A. SulpizioDavid J.K. GoldhaberH.S. Philip Wong
    • Arash HazeghiJoseph A. SulpizioDavid J.K. GoldhaberH.S. Philip Wong
    • G01R27/26
    • G01R27/26
    • The present approach is based on the use of an integrated capacitance bridge circuit to measure the capacitance of a device under test. A significant feature of this approach is that the operating point is not the null point of the bridge circuit. Instead, the operating point of the bridge circuit is tuned to be away from the null point. By moving away from the null point, the output signal from the bridge circuit is increased. Preferably, this output signal is substantially larger than the input noise floor of an amplifier connected to the bridge circuit output, while being substantially less than GνDUT, where G is the gain provided by the bridge circuit transistor and νDUT is the AC signal applied to the device under test. Experiments on graphene devices and on carbon nanotube FETs demonstrate about 10 aF resolution (graphene) and about 13 aF resolution (carbon nanotube FET) at room temperature.
    • 本方法基于使用集成电容电桥电路来测量被测器件的电容。 该方法的一个重要特征是工作点不是桥接电路的零点。 相反,桥接电路的工作点被调整为远离零点。 通过离开零点,来自桥接电路的输出信号增加。 优选地,该输出信号基本上大于连接到桥式电路输出的放大器的输入本底噪声,同时基本上小于G&ngr; DUT,其中G是由桥式电路晶体管提供的增益,并且DUT是AC 信号施加到被测器件。 在石墨烯器件和碳纳米管FET上的实验在室温下表现出约10 aF分辨率(石墨烯)和约13 aF分辨率(碳纳米管FET)。
    • 4. 发明授权
    • Integrated capacitance bridge for high-resolution wide-temperature-range capacitance measurement
    • 用于高分辨率宽温度范围电容测量的集成电容桥
    • US08704537B2
    • 2014-04-22
    • US13200701
    • 2011-09-27
    • Arash HazeghiJoseph A. SulpizioDavid J. K. GoldhaberH. S. Philip Wong
    • Arash HazeghiJoseph A. SulpizioDavid J. K. GoldhaberH. S. Philip Wong
    • G01R27/26
    • G01R27/26
    • The present approach is based on the use of an integrated capacitance bridge circuit to measure the capacitance of a device under test. A significant feature of this approach is that the operating point is not the null point of the bridge circuit. Instead, the operating point of the bridge circuit is tuned to be away from the null point. By moving away from the null point, the output signal from the bridge circuit is increased. Preferably, this output signal is substantially larger than the input noise floor of an amplifier connected to the bridge circuit output, while being substantially less than GνDUT, where G is the gain provided by the bridge circuit transistor and νDUT is the AC signal applied to the device under test. Experiments on graphene devices and on carbon nanotube FETs demonstrate about 10 aF resolution (graphene) and about 13 aF resolution (carbon nanotube FET) at room temperature.
    • 本方法基于使用集成电容电桥电路来测量被测器件的电容。 该方法的一个重要特征是工作点不是桥接电路的零点。 相反,桥接电路的工作点被调整为远离零点。 通过离开零点,来自桥接电路的输出信号增加。 优选地,该输出信号基本上大于连接到桥式电路输出的放大器的输入本底噪声,同时基本上小于G&ngr; DUT,其中G是由桥式电路晶体管提供的增益,并且DUT是AC 信号施加到被测器件。 在石墨烯器件和碳纳米管FET上的实验在室温下表现出约10 aF分辨率(石墨烯)和约13 aF分辨率(碳纳米管FET)。