会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Displaying road traffic condition information and user controls
    • 显示道路交通情况信息和用户控制
    • US08615354B2
    • 2013-12-24
    • US12856423
    • 2010-08-13
    • Alec BarkerTodd AsherMitchel A. BurnsOliver B. DownsCraig H. ChapmanRobert C. Cahn
    • Alec BarkerTodd AsherMitchel A. BurnsOliver B. DownsCraig H. ChapmanRobert C. Cahn
    • G08G1/137G08G1/123G08G1/09G08G1/01G01C21/36G08G1/056
    • G08G1/0962G08G1/0104G08G1/0968G08G1/0969
    • Techniques are described for displaying or otherwise providing information to users regarding various types of road traffic condition information in various ways. The information may be provided, for example, as part of a user interface (or “UI”), which may in some situations further include one or more types of user-selectable controls to allow a user to manipulate in various ways what road traffic condition information is displayed and/or how the information is displayed. A variety of types of road traffic condition information may be presented to users in various manners, including by presenting information on graphically displayed maps for geographic areas to indicate various information about road conditions in the geographic area. In addition, provided controls may allow users to select particular times, select particular routes, indicate to perform animation of various types of changing traffic conditions over a sequence of multiple successive times, etc.
    • 描述了用于以各种方式向用户显示或以其他方式提供关于各种类型的道路交通状况信息的信息的技术。 该信息可以例如作为用户界面(或“UI”)的一部分来提供,其在某些情况下可以进一步包括一种或多种类型的用户可选择的控制,以允许用户以各种方式操纵什么道路交通 显示条件信息和/或信息的显示方式。 可以以各种方式向用户呈现各种类型的道路交通状况信息,包括通过呈现关于地理区域的图形显示地图的信息来指示关于地理区域中的道路状况的各种信息。 此外,提供的控制可以允许用户选择特定时间,选择特定路线,指示在多个连续时间序列等上执行各种类型的改变交通状况的动画。
    • 3. 发明授权
    • Dynamic time series prediction of traffic conditions
    • 交通状况动态时间序列预测
    • US08275540B2
    • 2012-09-25
    • US13301622
    • 2011-11-21
    • Oliver B. DownsCraig H. ChapmanAlec Barker
    • Oliver B. DownsCraig H. ChapmanAlec Barker
    • G06F19/00G06G7/70G06G7/76G08G1/00
    • G08G1/0104G08G1/0968
    • Techniques are described for generating predictions of future traffic conditions at multiple future times, such as by using probabilistic techniques to assess various input data while repeatedly producing future time series predictions for each of numerous road segments (e.g., in a real-time manner based on changing current conditions for a network of roads in a given geographic area). In some situations, one or more predictive Bayesian models and corresponding decision trees are automatically created for use in generating the future traffic condition predictions for each geographic area of interest, such as based on observed historical traffic conditions for those geographic areas. Predicted future traffic condition information may then be used in a variety of ways to assist in travel and for other purposes, such as to plan optimal routes through a network of roads based on predictions about traffic conditions for the roads at multiple future times.
    • 描述了用于在多个未来时间产生对未来交通状况的预测的技术,例如通过使用概率技术来评估各种输入数据,同时重复地为多个路段中的每一个生成未来的时间序列预测(例如,基于 改变给定地理区域的道路网络的当前条件)。 在某些情况下,例如基于观察到的那些地理区域的历史交通条件,自动创建一个或多个预测贝叶斯模型和相应的决策树,以用于生成每个感兴趣地理区域的未来交通状况预测。 预测的未来交通状况信息可以以各种方式用于协助旅行和其他目的,例如基于关于未来时间的道路交通状况的预测来规划通过道路网络的最佳路线。
    • 5. 发明申请
    • Filtering road traffic condition data obtained from mobile data sources
    • 过滤从移动数据源获取的道路交通状况数据
    • US20070208495A1
    • 2007-09-06
    • US11444998
    • 2006-05-31
    • Craig ChapmanOliver DownsAlec BarkerMitchel BurnsScott Love
    • Craig ChapmanOliver DownsAlec BarkerMitchel BurnsScott Love
    • G08G1/00
    • G08G1/0129G08G1/0104G08G1/0133G08G1/052G08G1/056G08G1/065H04W88/02
    • Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads, as well as in some situations data from one or more other sources (such as physical sensors near to or embedded in the roads). The assessment of road traffic conditions based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics from the data samples. In some situations, the filtering of the data samples includes identifying data samples that are inaccurate or otherwise unrepresentative of actual traffic condition characteristics, such as data samples that are not of interest based at least in part on roads with which the data samples are associated and/or that otherwise reflect vehicle locations or activities that are not of interest.
    • 描述了基于获得的交通相关数据(例如来自车辆和其他在道路上行驶的其他移动数据源的数据样本)以及在某些情况下来自一个或多个其他来源(例如, 作为靠近或嵌入道路的物理传感器)。 基于获得的数据样本对道路交通状况的评估可以包括数据样本的各种过滤和/或调节,以及来自数据样本的业务相关特征的各种推断和概率确定。 在某些情况下,数据样本的过滤包括识别不准确或以其他方式代表实际交通状况特征的数据样本,例如至少部分地基于与数据样本相关联的道路不感兴趣的数据样本,以及 /或以其他方式反映车辆位置或不感兴趣的活动。
    • 6. 发明授权
    • Learning road navigation paths based on aggregate driver behavior
    • 基于总体驱动程序行为学习道路导航路径
    • US08738285B2
    • 2014-05-27
    • US13046644
    • 2011-03-11
    • Christopher L. ScofieldRobert CahnWeimin Mark WangAlec BarkerRobert Frederick Leidle
    • Christopher L. ScofieldRobert CahnWeimin Mark WangAlec BarkerRobert Frederick Leidle
    • G01C21/00G08G1/123
    • G08G1/0104G01C21/3415G01C21/3492G08G1/0129G08G1/052G08G1/096827
    • Techniques are described for generating and using information regarding road traffic in various ways, including by obtaining and analyzing road traffic information regarding actual behavior of drivers of vehicles on a network of roads. Obtained actual driver behavior information may in some situations be analyzed to identify decision point locations at which drivers face choices corresponding to possible alternative routes through the network of roads (e.g., intersections, highway exits and/or entrances, etc.), as well as to track the actual use by drivers of particular paths between particular decision points in order to determine preferred compound links between those decision point locations. The identified and determined information from the analysis may then be used in various manners, including in some situations to assist in determining particular recommended or preferred routes of vehicles through the network of roads based at least in part on actual driver behavior information.
    • 描述了以各种方式产生和使用关于道路交通的信息的技术,包括通过获得和分析关于道路网络上的车辆的驾驶员的实际行为的道路交通信息。 在某些情况下可以分析获得的实际驾驶员行为信息,以便识别驾驶员面对通过道路网络(例如交叉路口,公路出口和/或入口等)的可能的替代路线的选择的决策点位置,以及 以跟踪驾驶员在特定决策点之间的特定路径的实际使用,以便确定这些决策点位置之间的优选复合链接。 然后可以以各种方式使用来自分析的识别和确定的信息,包括在某些情况下,至少部分地基于实际的驾驶员行为信息来帮助确定通过道路网络的特定推荐或优选的车辆路线。
    • 7. 发明授权
    • Detecting anomalous road traffic conditions
    • 检测异常道路交通状况
    • US07899611B2
    • 2011-03-01
    • US11556648
    • 2006-11-03
    • Oliver B. DownsAlec BarkerRobert C. CahnCraig H. ChapmanWayne Stoppler
    • Oliver B. DownsAlec BarkerRobert C. CahnCraig H. ChapmanWayne Stoppler
    • G06G7/76
    • G08G1/0962G08G1/0104G08G1/0968G08G1/0969
    • Techniques are described for automatically detecting anomalous road traffic conditions and for providing information about the detected anomalies, such as for use in facilitating travel on roads of interest. Anomalous road traffic conditions may be identified using target traffic conditions for a particular road segment at a particular selected time, such as target traffic conditions that reflect actual traffic conditions for a current or past selected time, and/or target traffic conditions that reflect predicted future traffic conditions for a future selected time. Target traffic conditions may be compared to distinct expected road traffic conditions for a road segment at a selected time, with the expected conditions reflecting road traffic conditions that are typical or normal for the road segment at the selected time. Anomalous conditions may be identified based on sufficiently large differences from the expected conditions, and information about the anomalous conditions may be provided in various ways.
    • 描述了用于自动检测异常道路交通状况并提供关于检测到的异常的信息的技术,例如用于促进在感兴趣的道路上行驶。 可以使用特定选择时间的特定道路段的目标交通状况来识别异常道路交通状况,例如反映当前或过去选定时间的实际交通状况的目标交通状况,和/或反映预测未来的目标交通状况 未来选择时间的交通条件。 可以将目标交通状况与选定时间的道路段的不同预期道路交通状况进行比较,其中预期条件反映了在所选择的时间段对道路段的典型或正常的道路交通状况。 可以基于与预期条件的足够大的差异来识别异常状况,并且可以以各种方式提供关于异常状况的信息。
    • 8. 发明申请
    • Rectifying erroneous road traffic sensor data
    • 纠正错误的道路交通传感器数据
    • US20080046165A1
    • 2008-02-21
    • US11540342
    • 2006-09-28
    • Oliver B. DownsAlec BarkerCraig H. Chapman
    • Oliver B. DownsAlec BarkerCraig H. Chapman
    • G08G1/00G06F19/00
    • G08G1/0104
    • Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from road traffic sensors (e.g., physical sensors that are near or embedded in the roads) and/or from vehicles and other mobile data sources traveling on the roads. The assessment of road traffic conditions based on obtained sensor data readings and/or other data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest. Assessing obtained data may further include determining traffic conditions (e.g., traffic flow and/or average traffic speed) for various portions of a road network in a particular geographic area, based at least in part on obtained data samples.
    • 描述了基于获得的交通相关数据(例如来自道路交通传感器(例如,靠近或嵌入在道路中的物理传感器))和/或来自车辆和其他移动数据的数据样本来以各种方式评估道路交通状况的技术 源头在道路上行驶。 基于获得的传感器数据读数和/或其他数据样本对道路交通状况的评估可以包括数据样本的各种过滤和/或调节以及感兴趣的交通相关特征的各种推断和概率确定。 评估所获得的数据还可以包括至少部分地基于获得的数据样本来确定特定地理区域中的道路网络的各个部分的交通状况(例如,业务流量和/或平均业务速度)。
    • 10. 发明授权
    • Dynamic time series prediction of future traffic conditions
    • 动态时间序列预测未来交通状况
    • US08065073B2
    • 2011-11-22
    • US12897621
    • 2010-10-04
    • Oliver B. DownsCraig H. ChapmanAlec Barker
    • Oliver B. DownsCraig H. ChapmanAlec Barker
    • G06F19/00G06G7/70G06G7/76G06G1/00
    • G08G1/0104G08G1/0968
    • Techniques are described for generating predictions of future traffic conditions at multiple future times, such as by using probabilistic techniques to assess various input data while repeatedly producing future time series predictions for each of numerous road segments (e.g., in a real-time manner based on changing current conditions for a network of roads in a given geographic area). In some situations, one or more predictive Bayesian models and corresponding decision trees are automatically created for use in generating the future traffic condition predictions for each geographic area of interest, such as based on observed historical traffic conditions for those geographic areas. Predicted future traffic condition information may then be used in a variety of ways to assist in travel and for other purposes, such as to plan optimal routes through a network of roads based on predictions about traffic conditions for the roads at multiple future times.
    • 描述了用于在多个未来时间产生对未来交通状况的预测的技术,例如通过使用概率技术来评估各种输入数据,同时重复地为多个路段中的每一个生成未来的时间序列预测(例如,基于 改变给定地理区域的道路网络的当前条件)。 在某些情况下,例如基于观察到的那些地理区域的历史交通条件,自动创建一个或多个预测贝叶斯模型和相应的决策树,以用于生成每个感兴趣地理区域的未来交通状况预测。 预测的未来交通状况信息可以以各种方式用于协助旅行和其他目的,例如基于关于未来时间的道路交通状况的预测来规划通过道路网络的最佳路线。