会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TRENCH AND HOLE PATTERNING WITH EUV RESISTS USING DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA (CCP)
    • 使用双频电容耦合等离子体(CCP)对EUV电阻进行TRENCH和HOLE
    • WO2016161287A1
    • 2016-10-06
    • PCT/US2016/025555
    • 2016-04-01
    • TOKYO ELECTRON LIMITEDTOKYO ELECTRON U.S. HOLDINGS, INC.
    • MATSUMOTO, HiroieMETZ, Andrew, W.FEURPRIER, YannickLUTKER-LEE, Katie
    • H01L21/027H01L21/311
    • H01L21/0274G03F7/20G03F7/2004H01L21/0273H01L21/31058H01L21/31116H01L21/31138H01L21/31144
    • A method for etching an antireflective coating (604) on a substrate is disclosed. The substrate (600) comprises an organic layer (606), an antireflective coating layer (604) disposed above the organic layer (606), and a photoresist layer (602) disposed above the antireflective coating layer (604). The method includes patterning the photoresist layer (602) to expose a non-masked portion of the antireflective coating layer (604) and selectively depositing (608) a carbon-containing layer (609) on the non-masked portions of the antireflective coating layer (604) and on non-sidewall portions of the patterned photoresist layer (602). The method further includes etching (610) the substrate (600) to remove the carbon-containing layer (609) and to remove a partial thickness of the non-masked portions of the antireflective coating layer (604) without reducing a thickness of the photoresist layer (602). The method further includes repeating (612) the selective depositing (608) and etching (610), at least until the complete thickness of the non-masked portions of the antireflective coating layer (604) is removed, to expose the underlying organic layer (606).
    • 公开了一种在衬底上蚀刻抗反射涂层(604)的方法。 衬底(600)包括有机层(606),设置在有机层(606)上方的抗反射涂层(604)和设置在抗反射涂层(604)上方的光致抗蚀剂层(602)。 该方法包括图案化光致抗蚀剂层(602)以暴露抗反射涂层(604)的非掩蔽部分,并且在抗反射涂层的非掩蔽部分上选择性地沉积(608)含碳层(608) (604)和图案化的光致抗蚀剂层(602)的非侧壁部分上。 该方法还包括蚀刻(610)衬底(600)以除去含碳层(609)并除去抗反射涂层(604)的非掩模部分的部分厚度,而不减少光刻胶的厚度 层(602)。 该方法还包括至少直到去除抗反射涂层(604)的非掩蔽部分的完整厚度以去除以下步骤(612)选择性沉积(608)和蚀刻(610)以暴露下面的有机层( 606)。
    • 2. 发明申请
    • METAL JOINING COMPONENT AND METHOD FOR IMPROVED RECYCLING
    • 金属加工组件和改进回收方法
    • WO2015031353A1
    • 2015-03-05
    • PCT/US2014/052693
    • 2014-08-26
    • HARRIS, Joseph, W.
    • HARRIS, Joseph, W.
    • B23K35/40B23K35/02
    • B23K35/24B23K35/02B23K35/0227B23K35/0261B23K35/302B23K35/40
    • A consumable metal joining component (10) having identification for improved recycling has an elongated element (12) formed from a filler metal alloy with a predetermined alloying characteristic. The elongated element (12) has a pair of end portions (14, 16) and an intermediate portion (18) extending therebetween. Each of the end portions (14, 16) has a compositional indicium (24, 25) indicative of the predetermined alloying characteristic. One of the pair of end portions (14, 16) and the intermediate portion (18) of the elongated element (12) are configured to be consumed by heat in a metal joining process. As such, the other of the pair of end portions (14, 16) with the respective compositional indicium (24, 25) remains intact to enable recycling of the remaining end portion (14, 16) regardless of which end portion (14, 16) is consumed.
    • 具有用于改进再循环的识别的消耗性金属接合部件(10)具有由具有预定的合金化特性的填充金属合金形成的细长元件(12)。 细长元件(12)具有一对端部(14,16)和在它们之间延伸的中间部分(18)。 每个端部部分(14,16)具有指示预定的合金化特性的组成标记(24,25)。 一对端部(14,16)和细长元件(12)的中间部分(18)中的一个构造成在金属接合过程中被热量消耗。 因此,具有相应组成标记(24,25)的一对端部(14,16)中的另一个保持完整,以使剩余的端部部分(14,16)能够再循环,而不考虑哪个端部(14,16) )被消耗。
    • 3. 发明申请
    • PLASMA TUNING RODS IN MICROWAVE RESONATOR PLASMA SOURCES
    • 微波谐振器等离子体等离子体调谐器
    • WO2014149235A1
    • 2014-09-25
    • PCT/US2014/015530
    • 2014-02-10
    • TOKYO ELECTRONIC LIMITEDTOKYO ELECTRON U.S. HOLDINGS, INC.
    • ZHAO, JianpingCHEN, LeeFUNK, MerrittIWAO, ToshihikoVENTZEK, Peter, L.G.
    • H01J37/32
    • H01J37/32247H01J37/32256
    • A resonator system (100, 200, 300, 400, 1000, 1100, 1200, 1300) is provided with one or more resonant cavities configured to couple electromagnetic (EM) energy in a desired EM wave mode to plasma by generating resonant microwave energy in a resonant cavity adjacent the plasma. The resonator system can be coupled to a process chamber (110, 210, 310, 410, 1010, 1110, 1210, 1310) using one or more interface assemblies (165a, 165b, 265a, 265b, 365a, 365b, 465a, 465b, 1065) and isolation assemblies (164a-c, 264a-c, 364a-c, 464a-d, 1164a), and each resonant cavity can have a plurality of plasma tuning rods (170a-c and 175a-c, 270a-c and 275a-c, 370a-c and 375a-c, 470a-d and 475a-d, 570a-d and 575a-d, 670a-d and 675a-d, 770a-d and 775a-d, 1070a and 1075a, 1170a and 1175a) coupled thereto. The plasma tuning rods can be configured to couple the EM-energy from the resonant cavities to the process space (115, 215, 315, 415) within the process chamber.
    • 谐振器系统(100,200,300,400,1000,1100,1200,1300)设置有一个或多个谐振腔,其被配置为通过在所述EM波模式中产生谐振微波能量将期望的EM波模式中的电磁(EM)能量耦合到等离子体 与等离子体相邻的谐振腔。 谐振器系统可以使用一个或多个接口组件(165a,165b,265a,265b,365a,365b,465a,465b)耦合到处理室(110,210,310,410,1010,1110,1210,1310) 1065)和隔离组件(164a-c,264a-c,364a-c,464a-d,1164a),并且每个谐振腔可以具有多个等离子体调谐杆(170a-c和175a-c,270a-c和 275a-c,370a-c和375a-c,470a-d和475a-d,570a-d和575a-d,670a-d和675a-d,770a-d和775a-d,1070a和1075a,1170a和 1175a)。 等离子体调谐杆可被配置成将来自谐振腔的EM能量耦合到处理室内的处理空间(115,215,315,415)。
    • 4. 发明申请
    • HYBRID GATE LAST INTEGRATION SCHEME FOR MULTI-LAYER HIGH-K GATE STACKS
    • 用于多层高K栅极堆栈的混合栅极最后集成方案
    • WO2014062377A2
    • 2014-04-24
    • PCT/US2013/062982
    • 2013-10-02
    • TOKYO ELECTRON LIMITEDTOKYO ELECTRON U.S. HOLDINGS, INC.
    • CLARK, Robert, D.
    • H01L21/8238H01L21/28H01L29/66
    • H01L21/823857H01L21/28185H01L21/28194H01L21/823842H01L29/517H01L29/66545
    • A method for manufacturing a dual workfunction semiconductor device using a hybrid gate last integration scheme is described. According to one embodiment, the method includes heat-treating a first high-k film (104) at a first heat-treating temperature to diffuse a first chemical element from a first cap layer (108) into the first high-k film (104) in a device region (100a, 100b) to form a first modified high-k film (112, 1 13, 1 19). The method further includes a gate-last processing scheme to form recessed features (120, 122) defined by sidewall spacers (116, 140) in the device regions (100a, 100b) and depositing a second high-k film (124) in the recessed features (120, 122). Some embodiments include forming an oxygen scavenging layer (142, 152) on the first high-k film (104), where the heat-treating the first high-k film (104) scavenges oxygen from an interface layer (102, 103, 107) to eliminate or reduce the thickness of an interface layer (102, 103, 107).
    • 描述了一种使用混合栅极最后积分方案来制造双功函数半导体器件的方法。 根据一个实施例,该方法包括在第一热处理温度下热处理第一高k膜(104)以将第一化学元素从第一帽层(108)扩散到第一高k膜(104)中 )在器件区域(100a,100b)中以形成第一修改的高k膜(112,113,119)。 该方法还包括栅极最后处理方案以在器件区域(100a,100b)中形成由侧壁间隔物(116,140)限定的凹陷特征(120,122),并且在第二高k膜 凹入特征(120,122)。 一些实施例包括在第一高k膜(104)上形成除氧层(142,152),其中热处理第一高k膜(104)从界面层(102,103,107) )以消除或减小界面层(102,103,107)的厚度。
    • 5. 发明申请
    • METHOD OF MAKING A FUEL CELL DEVICE
    • 制造燃料电池装置的方法
    • WO2013176715A2
    • 2013-11-28
    • PCT/US2013/027304
    • 2013-02-22
    • DEVOE, AlanDEVOE, Lambert
    • DEVOE, AlanDEVOE, Lambert
    • H01M8/12
    • H01M8/1246H01M4/8814H01M4/8889H01M8/004H01M8/1226H01M8/124H01M8/2404H01M8/2435H01M2008/1293H01M2300/0074Y02E60/521Y02E60/525Y02P70/56
    • A monolithic fuel cell device (10) is provided by forming anode (24) and cathode (26) layers by dispensing paste of anode or cathode material around pluralities of spaced-apart removable physical structures (92) to at least partially surround the structures with the anode or cathode material and then drying the paste. An electrolyte layer (28) is provided in a multi-layer stack between the cathode layer and the anode layer thereby forming an active cell portion (50). The multi-layer stack is laminated, and then the physical structures (92) are pulled out to reveal spaced-apart active passages (14, 20) formed through each of the anode layer (24) and cathode layer (26). Finally, the laminated stack is sintered to form an active cell (50) comprising the spaced apart active passages (14, 20) embedded in and supported by the sintered anode material (24) and sintered cathode material (26).
    • 通过将阳极或阴极材料的浆料分散在多个间隔开的可移除的物理结构(92)周围以至少部分地围绕结构的方式通过形成阳极(24)和阴极(26)层来提供整体式燃料电池装置(10) 然后将阳极或阴极材料干燥。 在阴极层和阳极层之间的多层堆叠中提供电解质层(28),从而形成活性电池部分(50)。 层叠多层叠层,然后将物理结构(92)拉出以显示通过阳极层(24)和阴极层(26)中的每一个形成的间隔开的有源通道(14,20)。 最后,层压堆叠被烧结以形成活性电池(50),其包括嵌入烧结的阳极材料(24)和烧结的阴极材料(26)并由烧结的阳极材料(24)支撑的间隔开的有源通道(14,20)。
    • 6. 发明申请
    • METHOD OF OPERATING FILAMENT ASSISTED CHEMICAL VAPOR DEPOSITION SYSTEM
    • 操作FILAMENT辅助化学气相沉积系统的方法
    • WO2012112334A2
    • 2012-08-23
    • PCT/US2012/024045
    • 2012-02-07
    • TOKYO ELECTRON AMERICA, INC.TOKYO ELECTRON LIMITEDLEE, Eric, M.FAGUET, Jacques
    • LEE, Eric, M.FAGUET, Jacques
    • C23C16/02C23C16/44C23C16/452C23C16/46C23C16/56B05D3/00
    • C23C16/44C23C16/452C23C16/46C23C16/56
    • A method of performing a filament-assisted chemical vapor deposition process is described. The method includes providing a substrate holder (220, 320, 420, 1020) in a process chamber (410) of a chemical vapor deposition system (400, 600, 1001, 2001), providing a non-ionizing heat source separate from the substrate holder (220, 320, 420, 1020) in the process chamber (410), disposing a substrate (225, 425, 1025) on the substrate holder (220, 320, 420, 1020), introducing a film forming composition (532) to the process chamber (410), thermally fragmenting the film forming composition (532) using the non-ionizing heat source, and forming a thin film on the substrate (225, 425, 1025) in the process chamber (410). The non-ionizing heat source includes a gas heating device (250, 445, 550, 645, 750, 800, 900, 1045, 2045) through and/or over which the film forming composition (532) flows. The method further includes remotely producing a reactive composition, and introducing the reactive composition to the process chamber (410) to interact with the substrate (225, 425, 1025), wherein the reactive composition is introduced sequentially and/or simultaneously with the introducing the film forming composition (532).
    • 描述了进行长丝辅助化学气相沉积工艺的方法。 该方法包括在化学气相沉积系统(400,600,1001,2001)的处理室(410)中提供衬底保持器(220,320,420,1020),提供与衬底分离的非电离热源 在所述处理室(410)中的保持器(220,320,420,1020),将衬底(225,425,1025)设置在所述衬底保持器(220,320,420,1020)上,引入成膜组合物(532) 到处理室(410)中,使用非电离热源将成膜组合物热裂化(532),并在处理室(410)中的衬底(225,425,1025)上形成薄膜。 非电离热源包括通过成膜组合物(532)流过和/或在其上流动的气体加热装置(250,445,554,650,750,800,900,1045,2045)。 该方法还包括远程产生反应性组合物,并将反应性组合物引入处理室(410)以与基底(225,425,1025)相互作用,其中反应性组合物依次引入和/或同时引入 成膜组合物(532)。
    • 10. 发明申请
    • FUEL CELL DEVICE AND SYSTEM
    • 燃料电池装置和系统
    • WO2009111771A1
    • 2009-09-11
    • PCT/US2009/036485
    • 2009-03-09
    • DEVOE, AlanDEVOE, Lambert
    • DEVOE, AlanDEVOE, Lambert
    • H01M8/02H01M8/04H01M8/12H01M8/24
    • H01M8/004B33Y80/00H01M4/9025H01M8/0215H01M8/0247H01M8/0271H01M8/04007H01M8/04089H01M8/1213H01M8/1226H01M8/1231H01M8/1253H01M8/2404H01M8/2435H01M8/2483H01M2008/1293H01M2300/0074Y02E60/521Y02E60/525
    • Fuel cell devices and systems (10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 910, 920, 960) are provided. In certain embodiments, they include a ceramic support structure (29) having a length, a width, and a thickness. A reaction zone (32) positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte (28) separating first and second opposing electrodes (24,26), and active first and second gas passages (815,821) adjacent the respective first and second electrodes (24,26). At least one cold zone (30) positioned from the first end (1 Ia) along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage (814) extends from the first end (1 Ia) along the length through the cold zone (30) and into the reaction zone (32) and is fluidicly coupled to the active first gas passage (815), which extends from the artery flow passage (814) toward at least one side. The thickness of the artery flow passage (814) is greater than the thickness of the active first gas passage (815). In other embodiments, fuel cell devices (10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 910, 920, 960) include an electrolyte (28) having at least a portion thereof comprising a ceramic material sintered from a nano-sized powder. In yet other embodiments, cold zones (30) are provided at each end (11a,11b) with the reaction zone (32) therebetween having at least two discrete power sections, each having one or more active layers, the power sections fed by discrete fuel passages (962a,b) to provide a device (960) and system capable of operating at more than one power level.
    • 提供了燃料电池装置和系统(10,100,200,300,400,500,600,700,800,900,910,920,960)。 在某些实施例中,它们包括具有长度,宽度和厚度的陶瓷支撑结构(29)。 沿着长度部分定位的反应区(32)被配置为被加热到操作反应温度,并且其中至少有一个活性层包括分离第一和第二相对电极(24,26)的电解质(28) 以及与相应的第一和第二电极(24,26)相邻的主动的第一和第二气体通道(815,821)。 沿着长度的另一部分从第一端(11a)定位的至少一个冷区(30)被配置为保持低于操作反应温度。 动脉流动通道(814)从第一端(11a)沿着长度延伸通过冷区(30)并进入反应区域(32),并且流体耦合到活动的第一气体通道(815),其延伸 从动脉流动通道(814)朝向至少一侧。 动脉流通道(814)的厚度大于活动的第一气体通道(815)的厚度。 在其它实施例中,燃料电池装置(10,100,200,300,400,500,600,700,800,900,910,920,960)包括电解质(28),其中至少一部分包括陶瓷材料 从纳米尺寸的粉末烧结。 在其他实施例中,在每个端部(11a,11b)处设置有冷区(30),其间的反应区(32)具有至少两个离散的功率部分,每个功率部分具有一个或多个有源层,功率部分由离散 燃料通道(962a,b)以提供能够在多于一个功率水平上操作的装置(960)和系统。