会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明申请
    • MICROSTRUCTURE, METHOD FOR PRODUCING THE SAME, DEVICE FOR BONDING A MICROSTRUCTURE AND MICROSYSTEM
    • US20110284975A1
    • 2011-11-24
    • US13146759
    • 2010-01-26
    • Joerg BraeuerThomas GessnerLutz HofmannJoerg FroemelMaik WiemerHolger LetschMario Baum
    • Joerg BraeuerThomas GessnerLutz HofmannJoerg FroemelMaik WiemerHolger LetschMario Baum
    • H01L29/06H01L29/82H01L21/28H01L29/84B82Y99/00
    • B81C3/001B81C2203/019B81C2203/032
    • A microstructure has at least one bonding substrate and a reactive multilayer system. The reactive multilayer system has at least one surface layer of the bonding substrate with vertically oriented nanostructures spaced apart from one another. Regions between the nanostructures are filled with at least one material constituting a reaction partner with respect to the material of the nanostructures. A method for producing at least one bonding substrate and a reactive multilayer system, includes, for forming the reactive multilayer system, at least one surface layer of the bonding substrate is patterned or deposited in patterned fashion with the formation of vertically oriented nanostructures spaced apart from one another, and regions between the nanostructures are filled with at least one material constituting a reaction partner with respect to the material of the nanostructures. A device for bonding a microstructure, which has at least one bonding substrate and a reactive multilayer system, to a further structure, which has a bonding substrate. The device has a bonding chamber, which can be opened and closed and evacuated and in which the microstructure and the further structure can be introduced and aligned with one another, and also an activation mechanism, which is coupled to the bonding chamber and by means of which the reactive multilayer system of the microstructure, said reactive multilayer system being formed from reactive nanostructures with—situated therebetween—a material constituting a reaction partner with respect to the material of the nanostructures, can be activated mechanically, electrically, electromagnetically, optically and/or thermally in such a way that a self-propagating, exothermic reaction takes place between the nanostructures and the material constituting a reaction partner with respect to the material of the nanostructures. A microsystem is formed from two bonding substrates and a construction lying between the bonding substrates, the construction having a reacted reactive layer system, wherein the reacted reactive layer system is a reacted structure sequence composed of at least one surface layer—provided on the bonding substrate—with vertically oriented nanostructures spaced apart from one another, and regions filled between the nanostructures with at least one material constituting a reaction partner with respect to the material of the nanostructures. The microsystem is a sensor coated with biomaterial and/or has elements composed of polymeric material and/or at least one magnetic and/or piezoelectric and/or piezoresistive component.