会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明申请
    • CONCEPT-STRUCTURED IMAGE SEARCH
    • 概念结构图像搜索
    • US20110072048A1
    • 2011-03-24
    • US12565313
    • 2009-09-23
    • Xian-Sheng HuaJingdong WangHao Xu
    • Xian-Sheng HuaJingdong WangHao Xu
    • G06F17/30
    • G06F17/3053G06F17/30265
    • The concept-structured image search technique described herein pertains to a technique for enabling a user to indicate their semantic intention and then retrieve and rank images from a database or other image set according to this intention. The concept-structured image search technique described herein includes a new interface for image search. With this interface, a user can freely type several key textual words in arbitrary positions on a blank image, and also describe a region for each keyword that indicates its influence scope, which is called concept structure herein. The concept-structured image search technique will return and rank images that are in accordance with the concept structure indicated by the user. One embodiment of the technique can be used to create a synthesized image without actually using the synthesized image to perform a search of an image set.
    • 本文描述的概念结构图像搜索技术涉及一种使用户能够指示其语义意图,然后根据该意图从数据库或其他图像集中检索和排列图像的技术。 本文描述的概念结构图像搜索技术包括用于图像搜索的新界面。 通过该接口,用户可以在空白图像上任意位置自由地键入几个关键文本字,并且描述指示其影响范围的每个关键字的区域,这在本文中被称为概念结构。 概念结构图像搜索技术将返回并对与用户指示的概念结构相一致的图像进行排序。 该技术的一个实施例可以用于创建合成图像而不实际使用合成图像来执行图像集的搜索。
    • 82. 发明授权
    • Video booklet
    • 视频小册子
    • US07840898B2
    • 2010-11-23
    • US11264357
    • 2005-11-01
    • Xian-Sheng HuaShipeng LiCai-Zhi Zhu
    • Xian-Sheng HuaShipeng LiCai-Zhi Zhu
    • G06F3/00G06F3/048
    • G06F17/30825G06F17/30843G06F17/30852G06K9/00711G11B27/105G11B27/11G11B27/329
    • Systems and methods are described for creating a video booklet that allows browsing and search of a video library. In one implementation, each video in the video library is divided into segments. Each segment is represented by a thumbnail image. Signatures of the representative thumbnails are extracted and stored in a database. The thumbnail images are then printed into an artistic paper booklet. A user can photograph one of the thumbnails in the paper booklet to automatically play the video segment corresponding to the thumbnail. Active shape modeling is used to identify and restore the photo information to the form of a thumbnail image from which a signature can be extracted for comparison with the database.
    • 描述了用于创建允许浏览和搜索视频库的视频小册子的系统和方法。 在一个实现中,视频库中的每个视频被分成多个段。 每个片段由缩略图形式表示。 代表性缩略图的签名被提取并存储在数据库中。 然后将缩略图图像打印到艺术纸小册子中。 用户可以拍摄纸小册子中的一个缩略图,以自动播放与缩略图对应的视频段。 主动形状建模用于将照片信息识别并恢复为缩略图的形式,从中可以提取签名以与数据库进行比较。
    • 84. 发明申请
    • VIDEO CONCEPT DETECTION USING MULTI-LAYER MULTI-INSTANCE LEARNING
    • 使用多层次多实例学习的视频概念检测
    • US20090274434A1
    • 2009-11-05
    • US12111202
    • 2008-04-29
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • Tao MeiXian-Sheng HuaShipeng LiZhiwei Gu
    • G11B27/00
    • G11B27/28G06K9/00711G06K9/6282
    • Visual concepts contained within a video clip are classified based upon a set of target concepts. The clip is segmented into shots and a multi-layer multi-instance (MLMI) structured metadata representation of each shot is constructed. A set of pre-generated trained models of the target concepts is validated using a set of training shots. An MLMI kernel is recursively generated which models the MLMI structured metadata representation of each shot by comparing prescribed pairs of shots. The MLMI kernel is subsequently utilized to generate a learned objective decision function which learns a classifier for determining if a particular shot (that is not in the set of training shots) contains instances of the target concepts. A regularization framework can also be utilized in conjunction with the MLMI kernel to generate modified learned objective decision functions. The regularization framework introduces explicit constraints which serve to maximize the precision of the classifier.
    • 视频剪辑中包含的视觉概念基于一组目标概念进行分类。 剪辑被分割成镜头,并且构建每个镜头的多层多实例(MLMI)结构化元数据表示。 使用一组训练镜头验证了一组预先生成的目标概念训练模型。 通过比较规定的拍摄对,递归地生成MLMI内核,以对每个镜头的MLMI结构化元数据表示进行建模。 MLMI内核随后被用于生成学习的客观决策函数,该函数学习用于确定特定镜头(不在该组训练镜头中)是否包含目标概念的实例的分类器。 正则化框架也可以与MLMI内核一起使用,以生成修改后的学习目标决策函数。 正则化框架引入明确的约束,用于最大化分类器的精度。
    • 90. 发明授权
    • Multi-video synthesis
    • 多视频综合
    • US08207989B2
    • 2012-06-26
    • US12334231
    • 2008-12-12
    • Tao MeiXian-Sheng HuaShipeng LiTeng Li
    • Tao MeiXian-Sheng HuaShipeng LiTeng Li
    • H04N9/74
    • G11B27/036
    • Embodiments that provide multi-video synthesis are disclosed. In accordance with one embodiment, multi-video synthesis includes breaking a main video into a plurality of main frames and break a supplementary video into a plurality of supplementary frames. The multi-video synthesis also includes assigning one or more supplementary frames into each of a plurality of states of a Hidden Markov Model (HMM), where each of the plurality of states corresponding to one or more main frames. The multi-video synthesis further includes determining optimal frames in the plurality of main frames for insertion of the plurality of supplementary frames based on the plurality of states and visual properties. The optimal frames include optimal insertion positions. The multi-video synthesis additionally includes inserting the plurality of supplementary frames into the optimal insertion positions to form a synthesized video.
    • 公开了提供多视频合成的实施例。 根据一个实施例,多视频合成包括将主视频分解成多个主帧并将辅助视频分解成多个补充帧。 多视频合成还包括将一个或多个补充帧分配给隐马尔可夫模型(HMM)的多个状态中的每个状态,其中多个状态中的每个状态对应于一个或多个主帧。 多视频合成还包括基于多个状态和视觉属性来确定多个主帧中的最佳帧以插入多个补充帧。 最佳帧包括最佳插入位置。 多视频合成还包括将多个辅助帧插入最佳插入位置以形成合成视频。