会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明申请
    • Screening Method And Apparatus For Use In Intaglio Printing
    • 用于凹版印刷的筛选方法和装置
    • US20140033937A1
    • 2014-02-06
    • US13996967
    • 2011-12-24
    • Haifeng LiBin Yang
    • Haifeng LiBin Yang
    • G03F5/20
    • G03F5/20H04N1/4055
    • The present application provides a screen method for intaglio printing, comprising: dividing multiple classes of regions according to a brightness range; and generating screen dots with various screen patterns for the grouped classes of regions. The present application also provides a screen device for intaglio printing, comprising: a dividing module configured to group multiple classes of regions according to the brightness range; and a generating module configured to generate screen dots with various screen patterns for the grouped classes of regions. Since multiple kinds of screen patterns are applied in the technical solutions in present application, the problem, i.e., water ripple will occur in the prior art, may be addressed, so as to improve the quality of printing.
    • 本申请提供了一种用于凹版印刷的屏幕方法,包括:根据亮度范围划分多个类别的区域; 并且为分组的区域类别生成具有各种屏幕图案的屏幕点。 本申请还提供了一种用于凹版印刷的屏幕装置,包括:分割模块,被配置为根据亮度范围对多个类别的区域进行分组; 以及生成模块,被配置为生成用于所述分组的区域类别的各种屏幕图案的屏幕点。 由于在本申请中的技术方案中应用了多种屏幕图案,所以可以解决现有技术中出现的水波纹问题,以提高打印质量。
    • 82. 发明授权
    • Integrated microchannel synthesis and separation
    • 集成微通道的合成和分离
    • US08497308B2
    • 2013-07-30
    • US12439872
    • 2007-09-05
    • Anna Lee Y. TonkovichRobert D. LittTimothy M. WernerBin Yang
    • Anna Lee Y. TonkovichRobert D. LittTimothy M. WernerBin Yang
    • C07C27/00
    • B01J19/0093B01J19/1831B01J2219/00783B01J2219/00835B01J2219/00873B01J2219/00984C07C29/152C10G2/341C07C31/04
    • A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
    • 一种用于串联进行至少两个单元操作的方法,该方法包括以下步骤:(a)将进料流引导到集成组件中,其包括在进料流的至少一种化学品上的第一微通道单元操作以产生 在第一组离散微通道中离开第一微通道单元操作的分布式输出流,其隔离通过离散微通道的流动; 和(b)将第一微通道单元操作的分布式输出流引导到作为分布式输入流的第二微通道单元操作中,以继续隔离第一组离散微通道之间的流动,并且至少一种化学物质进行至少一种操作 以产生离开第二微通道单元操作的产品流,其中第一微通道单元操作和第二单元操作共享外壳。
    • 86. 发明授权
    • Semiconductor device with reduced junction leakage and an associated method of forming such a semiconductor device
    • 具有减小的结漏电的半导体器件和形成这种半导体器件的相关方法
    • US08349716B2
    • 2013-01-08
    • US12911186
    • 2010-10-25
    • Ming CaiChristian LavoieAhmet S. OzcanBin YangZhen Zhang
    • Ming CaiChristian LavoieAhmet S. OzcanBin YangZhen Zhang
    • H01L21/336H01L21/04
    • H01L21/2257H01L21/28512H01L21/28518H01L29/665H01L29/66643
    • Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.
    • 公开了一种具有p-n结的半导体器件,其在存在延伸到结的金属硅化物缺陷的情况下具有减少的结漏电以及形成器件的方法。 具体地说,形成具有p-n结的半导体层。 在半导体层上形成金属硅化物层,并且将掺杂剂注入到金属硅化物层中。 执行退火处理,使掺杂剂朝向金属硅化物半导体层界面迁移,使得掺杂剂的峰值浓度将在金属硅化物层的与金属硅化物半导体层界面接壤并包围缺陷的部分内。 结果,硅化物与硅接触被有效地设计以增加缺陷处的肖特基势垒高度,这反过来大大降低了当p-n结处于相反极性时将会发生的任何泄漏。
    • 88. 发明授权
    • Semiconductor device fabrication method for improved isolation regions and defect-free active semiconductor material
    • 用于改进隔离区域和无缺陷活性半导体材料的半导体器件制造方法
    • US08198170B2
    • 2012-06-12
    • US12905805
    • 2010-10-15
    • Man Fai NgBin Yang
    • Man Fai NgBin Yang
    • H01L21/762
    • H01L21/76224H01L21/76283H01L21/823807H01L21/823878H01L21/84
    • A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
    • 提供了半导体器件结构的制造方法。 该器件结构具有一层硅层和一层覆盖硅层的二氧化硅层,该方法开始于通过去除一部分二氧化硅和一部分硅来形成隔离凹槽。 隔离凹部填充有应力诱导性氮化硅,然后去除二氧化硅,使得应力诱导性氮化硅突出于硅上方。 接下来,暴露的硅被热氧化以形成覆盖在硅上的二氧化硅硬掩模材料。 此后,去除二氧化硅硬掩模材料的第一部分以露出硅的可接近表面,同时留下二氧化硅硬掩模材料的第二部分完好无损。 接下来,从硅的可接近表面外延生长硅锗。