会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明申请
    • Speech signal compression device, speech signal compression method, and program
    • 语音信号压缩装置,语音信号压缩方法和程序
    • US20060167690A1
    • 2006-07-27
    • US10545427
    • 2004-03-26
    • Yasushi Sato
    • Yasushi Sato
    • G10L15/00
    • G10L21/0208G10L25/90
    • There is provided a speech signal noise elimination device and the like for eliminating noise mixed in speech with certainty. A pitch analysis section 2 determines the modified moving average of frequencies of pitch components of speech indicated by an original speech signal acquired by a speech input section 1. A variable filter 3 extracts the pitch components by removing from an original speech signal components other than components at and around the modified moving average determined by the pitch analysis section 2. An absolute value detection section 4 determines an absolute value of the pitch components, and a lowpass filter 5 filters a signal indicating the obtained absolute value to generate a gain adjustment signal. Then, the original speech signal, for which timing is adjusted by a delay section 6, is amplified or attenuated by a gain adjustment section 7 by gain determined by the value of the gain adjustment signal and outputted.
    • 提供了一种用于消除语音混合在一起的噪声的语音信号噪声消除装置等。 音调分析部分2确定由语音输入部分1获取的原始语音信号指示的语音的音调分量的频率的修改的移动平均值。 可变滤波器3通过从音调分析部分2确定的修改的移动平均处和周围的分量除外的原始语音信号分量来提取音调分量。 绝对值检测部分4确定音调分量的绝对值,并且低通滤波器5对表示所获得的绝对值的信号进行滤波以产生增益调整信号。 然后,由延迟部分6调整定时的原始语音信号由增益调整部分7由增益调整信号的值确定的增益放大或衰减并被输出。
    • 72. 发明授权
    • Organic EL display device
    • 有机EL显示装置
    • US07027014B2
    • 2006-04-11
    • US10994241
    • 2004-11-23
    • Yasushi SatoTakuya Higuchi
    • Yasushi SatoTakuya Higuchi
    • G09G3/32
    • G09G3/3233G09G3/3291G09G2300/0809G09G2300/0847G09G2320/0233
    • Disclosed is an organic EL display device which includes a light emitter; a current controller controlling a current to be fed to the light emitter; a current detector detecting a value of current flowing through the light emitter as a voltage; a first switching unit switching between transmission and non-transmission of a voltage value corresponding to the detected current; a comparison amplifier comparing and amplifying the voltage value transmitted from the first switching unit to a voltage value corresponding to the image signal; a second switching unit switching between transmission and non-transmission of the voltage value being a result of the comparison and amplification; and an image signal holding capacitor charged/discharged based on the voltage value transmitted from the second switching unit, the current controller controlling the current to be fed to the light emitter based on a charging voltage of the image signal holding capacitor.
    • 公开了一种有机EL显示装置,其包括发光体; 电流控制器,控制要馈送到所述发光体的电流; 电流检测器,检测作为电压流过所述发光体的电流值; 第一切换单元,在与检测到的电流对应的电压值的传输和不传输之间切换; 比较放大器,将从第一开关单元发送的电压值与对应于图像信号的电压值进行比较和放大; 第二开关单元,在作为比较和放大的结果的电压值的传输和非传输之间进行切换; 以及基于从第二开关单元发送的电压值充电/放电的图像信号保持电容器,电流控制器基于图像信号保持电容器的充电电压控制要馈送到发光器的电流。
    • 76. 发明授权
    • Gas concentration sensor
    • 气体浓度传感器
    • US06418782B1
    • 2002-07-16
    • US09480663
    • 2000-01-11
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • Yoshikuni SatoNoboru IshidaHideki IshikawaTakafumi OshimaYasushi Sato
    • G01N2902
    • G01N29/36G01N29/024G01N2291/011G01N2291/0215G01N2291/0258G01N2291/02809G01N2291/045
    • When a sensor has deteriorated, the propagation time T1′ of a first reflection wave becomes greater than the propagation time T1 of a first reflection wave as measured in a new sensor. If measurement of the concentration of a specific gas is based on the propagation time T1 of the first reflection wave as measured in the new sensor, gas concentration cannot be determined accurately. By contrast, a reflection wave other than the first reflection wave (for example, a second reflection wave) is merely reflected off the surface of the ultrasonic element and is not affected by the internal structure of the ultrasonic element. Therefore, even when the sensor is deteriorated, the propagation time T2, T2′ of the second reflection wave exhibits less variation and is less susceptible to deterioration of the sensor. Therefore, the concentration of a specific gas is determined on the basis of the propagation time of the second reflection wave, which is less susceptible to deterioration of the sensor, instead of the propagation time of the first reflection wave, which is more susceptible to deterioration of the sensor. Thus, gas concentration can be measured accurately.
    • 当传感器恶化时,第一反射波的传播时间T1'变得大于在新传感器中测量的第一反射波的传播时间T1。 如果特定气体的浓度的测定是基于在新传感器中测定的第一反射波的传播时间T1,则不能准确地确定气体浓度。 相反,除了第一反射波(例如,第二反射波)之外的反射波仅仅从超声波元件的表面反射,并且不受超声波元件的内部结构的影响。 因此,即使在传感器劣化的情况下,第二反射波的传播时间T2'T2'变化较小,也不易受传感器劣化的影响。 因此,特定气体的浓度基于不易受传感器劣化的第二反射波的传播时间而不是更容易劣化的第一反射波的传播时间而确定 的传感器。 因此,可以准确测量气体浓度。
    • 77. 发明授权
    • Optical fiber distortion measuring apparatus and optical fiber distortion measuring method
    • 光纤失真测量仪和光纤失真测量方法
    • US06366348B1
    • 2002-04-02
    • US09551448
    • 2000-04-18
    • Yasushi SatoHaruyoshi UchiyamaToshio Kurashima
    • Yasushi SatoHaruyoshi UchiyamaToshio Kurashima
    • G01N2188
    • G01M11/319
    • The present invention provides an optical fiber distortion measuring apparatus and optical fiber distortion measuring method which make it possible to measure the amount of distortion of an optical fiber efficiently and in a short period of time. The time change waveform when a light pulse having a frequency of &ngr;1 is applied is compared with initial data (the time change waveform obtained in a case in which there is no distortion). Then, the light intensity L1 at a position Dx at which the light intensities do not agree is obtained. Next, the time change waveform is measured when a light pulse having a frequency of &ngr;2 is applied, and the light intensity L2 at position Dx is obtained. After this, the loss (resulting from distortion) in light intensities L1 and L2 is corrected, and light intensities LC1 and LC2 are obtained. Curve calculating unit 17 obtains a second-order curve which is a curve resulting from the parallel movement of a curve approximating the spectrum waveform of the initial data, and which contains the (&ngr;1, LC1) and (&ngr;2, LC2) described above. The peak frequency detecting unit 12 obtains the light frequency exhibiting a maximum value in the light intensity in the second-order curve. The distortion amount calculating unit 13 calculates the amount of distortion based on this light frequency.
    • 本发明提供一种光纤失真测量装置和光纤失真测量方法,其可以在短时间内有效地测量光纤的失真量。 将施加了频率为ngr的光脉冲的时间变化波形与初始数据(在没有失真的情况下获得的时间变化波形)进行比较。 然后,获得光强度不一致的位置Dx处的光强度L1。 接下来,当施加具有频率为&ngr.2的光脉冲时测量时变波形,并且获得位置Dx处的光强度L2。 之后,校正亮度L1和L2中的损失(由失真引起的),并且获得光强度LC1和LC2。 曲线计算单元17获得二阶曲线,其是由与初始数据的频谱波形近似的曲线并行运动产生的曲线,并且包含(&ngr; 1,LC1)和(&ngr; 2,LC2) 如上所述。 峰值频率检测单元12获得在二阶曲线中呈现出光强度的最大值的光频率。 失真量计算单元13基于该光频率来计算失真量。
    • 80. 发明授权
    • OTDR measurement device
    • OTDR测量装置
    • US5777727A
    • 1998-07-07
    • US864446
    • 1997-05-28
    • Yasushi SatoHaruyoshi Uchiyama
    • Yasushi SatoHaruyoshi Uchiyama
    • G01M11/00G01J11/00G01M11/02G01N21/84G01N21/88
    • G01J11/00
    • An OTDR measurement device employs optical heterodyne wave detection to perform measurement on optical fibers. Optical pulses are incident on a measuring optical fiber, which in turn outputs backward scattering light. The device performs heterodyne wave detection on the backward scattering light as well as probe light whose frequency is set in proximity to a frequency of the backward scattering light, thus producing a detection voltage. The device provides a differential amplifier which performs amplification on a difference between the detection voltage and a reference voltage to produce a difference signal. An A/D converter converts the difference signal to a digital signal. Square addition is performed on the digital signal to produce a mean square signal representing property of the measuring optical fiber. Herein, calculations are performed on the mean square signal to produce a reference signal, which is then converted to the reference voltage. Herein, the reference signal is produced based on a reference value which is determined in advance such that the difference signal corresponds to an intermediate value of a voltage conversion range of the A/D converter under a state where only the probe light is incident on the device. Moreover, the reference signal is automatically changed to correct a shift of the reference voltage due to disturbance factors such as variations of temperature.
    • OTDR测量装置采用光外差波检测来对光纤进行测量。 光脉冲入射到测量光纤上,测量光纤又输出反向散射光。 该装置对后向散射光进行外差波检测以及将频率设定在靠近反向散射光的频率的探测光,从而产生检测电压。 该器件提供了一种差分放大器,其对检测电压和参考电压之间的差进行放大以产生差分信号。 A / D转换器将差分信号转换成数字信号。 对数字信号进行平方加法,以产生表示测量光纤特性的均方根信号。 这里,对均方根信号进行计算以产生参考信号,然后将其转换为参考电压。 这里,参考信号是基于预先确定的参考值产生的,使得差分信号对应于在只有探测光入射到其上的A / D转换器的电压转换范围的中间值 设备。 此外,参考信号被自动改变以校正由于诸如温度变化的干扰因素引起的参考电压的偏移。